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Abstract

In this study the normative properties of various social choice rules are in-
vestigated as well as the rationality of the social decision they produce with
respect to several rationality constraints. Arrovian rules, i.e., the rules that sat-
isfy the locality condition (an analog of independence of irrelevant alternatives),
are the main focus, but other common rules, such as Plurality and Borda, are
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1 Introduction

In this paper I study several social choice rules. The focus of voting theory, the sub-
ject of the present paper, is well summarized in the introduction of Aizerman and
Aleskerov’s (1995) Theory of Choice.1

’Voting theory studies the following model: a group of any finite number
n of individuals (voters) considers a finite set A of options (these can be
candidates, plans, projects, etc.). Within the framework of some constraints
that are similar for everybody2 the voters can formulate their own opinions
about the options to be selected. The problem is to ’process’ the generally
non-coinciding decisions of the voters into a single social decision meeting
the same constraints, if any. Consideration can be given either to the
deterministic or the probabilistic statement of the problem. Below, we
discuss the deterministic one. Analysis of not only some social processes
where n can be regarded as sufficiently great, but also of collective decision
making in ’small groups’ such as boards, committees, meetings, etc., reduces
to the models of this kind.’

In Section 2, I introduce the necessary notation and various conventions to be
used throughout the paper. In Section 3, I introduce the social choice models in the
literature, that is, Social Choice Correspondences, Functional Voting Rules and Social
Decision Rules. Then I give definitions of the 14 rules to be analyzed from different
models, acoupled with illustrative examples. In Section 4, I list the definitions and
intuitive explanations of various normative and rationality conditions (specific to each
social choice model) introduced in the literature and provide a survey of results with
regard to the relationships between these conditions. In Section 5, I analyze the rules
first with respect to normative conditions then with respect to rationality constraints.
In Section 6, I conclude by providing the results in Tables where I indicate whether a
rule satisfies a certain condition. In the Appendix, I provide a list of formal definitions
of 37 social choice rules.

2 Preliminaries

Let A = {a, b, ..., x, y, ...} be a finite non-empty set of alternatives with |A| ≥ 2, and a
presentation X be any non-empty subset3 of A, i.e., ∅ �= X ⊆ A. Let N = {1, 2, ....., n}
be a finite non-empty set of individuals (voters) with |N | ≥ 2; a coalition ω be any
non-empty subset of voters, i.e., ∅ �= ω ⊆ N . Set of all presentations and set of all
coalitions will be denoted by A and Ω, respectively, i.e., A = 2A\{∅} and Ω = 2N\{∅}.

1Theory of Choice is the earliest book that presents the Western reader the advancements in this
theory achieved in Russia during the post-war period.

2The constraints can be exemplified by pointing out the number of options to be selected, etc.
3Hereafter ⊂ will dentoe the strict inclusion and ⊆ will denote the weak inclusion.
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A Social Choice Procedure (SCP) is a function that is used to aggregate individual
opinions on a given presentation X in order to have a social decision on X. The forms
of individual opinions and social decision will be explicitly defined for different models
of SCPs in the next section. Unless otherwise stated the grand coalition, i.e., N, will be
the given coalition and ’set of voters’ or just ’voters’ will mean N . To prepare reader
for descriptions of SCPs some general notions are in order.

The opinions of voters might be in the form of a binary relation or a choice function
and this is also true for a social opinion (decision). For the case of binary relations,
weak orders4 will be considered most generally as individual opinions. But sometimes,
I will assume the given weak order to be a connected weak order, i.e., a linear order5.
From now on W denote the set of all weak orders on A, LO will denote the set of
all linear orders on A. Throughout this text, a weak order or linear order will be
interpreted as a preferenceand sometimes ’a is preferred to b’ may be used for aPb.

A choice function C(·) is defined as C : A → 2A under the condition C(X) ⊆ X
for any X ∈ A. Let us denote as C the set of all choice functions defined on A.

To denote a weak order P (resp. choice function C(·)) which is the opinion of

individual i ∈ N on A , Pi (resp. Ci(·) ) will be used. Given A and N, a profile
−→
P

(resp.
−→
C (·) ) of weak orders (resp. choice functions ) is the set of individual opinions,

i.e.,
−→
P = {Pi}i∈N (resp.

−→
C = {Ci(·)}i∈N ) and set of all profiles are denoted by WN

for weak orders and CN for choice functions. To demonstrate a profile of weak orders
the following convention will be used throughout the text.

P1 P2 P3 P4 P5

a b a c a
d a, d b, c, d b b, c
b c a d
c d

This ’table’ represents a profile of weak orders belonging to a society consisting of 5
individuals. Since properties of a weak order enables one to establish either equivalency
or preference of one to the other between any two alternatives, the above convention is
able to represent a profile of weak orders, however for sake of clearance the following
two remarks are made. 1) Any alternative is preferred to every alternative placed
below and 2) the alternatives placed in the same line belong to an equivalence class,
that is, none is preferred to neither of them. A similar convention is for profiles of

4A weak order is a binary relation with the following three properties: irreflexivity, transitivity
and negative transitivity (i.e.,∀x, y, z ∈ A xPz ⇒ xPy or yPz, where P is a binary reation on A).
These properties enable one to establish either equivalency of two alternatives or dominance of one to
the other.

5A linear order is a connected weak order where connectedness is defined as follows. ∀x, y ∈ A
x �= y ⇒ (xPy or yPx). Properties of a linear order allow us to compare any two alternatives so that
one can list the alternatives in order of preference, starting from the most preferred (top) element and
ending with the least preferred (worst) element.
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choice functions as follows:

X C1(·) C2(·) · Cn(·) C(·)
A C1(A) C2(A) · Cn(A) C(A)
· · · · · ·
X C1(X) C2(X) · Cn(X) C(X)
· · · · · ·
· · · · · ·

The first column of the table can contain all the possible presentations however this
is not always necessary for our purposes. All but last of the remaining columns are
individual choice functions, that is the choice sets of the individual in response to the
presentations, and the last column is the social decision.

For both versions of the convention the following statements are true. In this
format, a point in an individual choice function or an individual preference such as
(·) denotes that any of the existing possibilities are permitted. Such a point in social
decision permits changes according to changes in parameters but this does not affect
the point that is being made. Sometimes, numbers or parameters may stand in the
column headings for individual preferences or choice functions which may either denote
that so many individuals identically have such preferences or choice functions, or they
may denote the indices of voters. For example, below there is a preference profile−→
P and a profile of choice functions {Ci(·)}. In

−→
P , the convention allows us to know

that 3 individuals have the first, k − 1 individuals have the second and 1 individual
have the third preference, respectively. Similarly, in {Ci(·)}, 4 individuals have the
first, k individuals have the second and 3 individuals have the third choice function,

respectively. To denote that preferences in
−→
P ′ belong to 1st, 2nd and 3rd voters, these

indices are written in order above the preferences. Similar conventions can be used for
choice functions.

−→
P

3 k − 1 1
b a c
c b, c ·
d d ·

a, e e d, e

X 4 k 3
{x, y, z} {x, y} {y} {x}

· · · ·
{y, z} {y} · {y}

· · · ·
· · · ·

−→
P ′

1 2 3
a b, c b
b d ·
d a ·

c, e e c, e

Sometimes it will be necessary to constrain the initial opinions of voters (in the
form of weak orders) to X ⊂ A. Given Pi on A and i ∈ N, contraction of Pi to X ⊂ A

will be denoted by Pi/X, where Pi/X = Pi ∩ (X × X) and contraction of a profile
−→
P

will be denoted as
−→
P /X where

−→
P /X = {Pi/X}i∈N . Similarly, it may be necessary to

contract the profile to a proper subset of N , such as ω ⊂ N , then I use
−→
P /ω where−→

P /ω = {Pi}i∈ω, or I may need to contract the profile both to X and ω, in which case

I use
−→
P /(X,ω) = {Pi/X}i∈ω.

Given
−→
P ∈ WN some SCPs require to define for each voter the set of alternatives

preferred to the given alternative x ∈ A, i.e., the upper contour sets of x ∈ A with
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respect to voters. The upper contour set of any x ∈ A with respect to i ∈ N is defined
as Di(x) = {y ∈ A : yPix}. Similarly, lower contour sets can be defined for any x ∈ A
and i ∈ N, i.e., Li(x) = {y ∈ A : xPiy}.

Given an alternative a ∈ A and a profile of weak orders
−→
P , some SCPs operate with

the number of voters who do not prefer any other alternative b ∈ A\{a} to the given
alternative, that is who declare a as best alternative or who give a a ’top’ vote. This

number will be denoted by n+(a,
−→
P ), i.e. n+(a,

−→
P ) = |{i ∈ N : |Di(a)| = 0}| . This

notation can be generalized as follows: n+
j+1(a,

−→
P ) = |{i ∈ N : |Di(a)| ≤ j}| where

j ∈ {0, 1, ..., |A| − 1}. Then n+
1 (a,

−→
P ) = n+(a,

−→
P ).

Given an alternative x ∈ A and a profile of choice functions, VN(x,X; {Ci(·)})
(hereafter without subscript N, V (x,X; {Ci(·)}) for short) will denote the set of voters
who include x in their choice sets from X, i.e., {i ∈ N : x ∈ Ci(X)} . If the set of voters
under consideration is different from the grand coalition such as ω1 ⊂ N, then this
will be stated as a subscript, i.e., Vω1(x,X; {Ci(·)}). Similarly, given two alternatives
x, y ∈ A and a profile of binary relations, VN(x, y; {Pi}) (hereafter V (x, y; {Pi}) for
short) will denote the set of voters who include (x, y) in their preferences.

Given the grand coalition N , ω ∈ Ω is a majority of N if |ω| ≥ �n/2�, where �x�
denotes smallest integer greater than or equal to x. One can similarly define majority
not only for N but also for any coalition ω ∈ Ω. Let n(a, b) denote the number of voters

who prefer a to b under
−→
P , i.e., n(a, b) = |{i ∈ N : aPib}|. Using this, the majority

relation μ is defined as follows:

aμb ⇐⇒ n(a, b) > n(b, a).

3 Social Choice Models and Rules

A SCP belongs to one of the following models defined with regard to the form individual
opinions are given and social decision is to be constructed. It may aggregate individual
binary relations either to a social binary relation or to a social choice function or it
may aggregate individual choice functions to a social choice function. Then given A
and N, it follows that there are three models for SCPs that are going to be examined:

(1) F : A× Ω ×Wn → C (Social Choice Correspondences)

(2) F : A× Ω × Cn → C (Functional Voting Rules)

(3) F : A× Ω ×Wn → B (Social Decision Rules)

where F is the SCP, B is the set of all binary relations on A.
Remark 1: As stated before, the set of all weak orders will be considered as the

most general form in which individual opinions are given, but the social decision can
be any kind of binary relation depending on the profile and the procedure.
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The procedures that belong to the first model are called as ’Social Choice Cor-
respondences (SCCs)’ and respectively those in the second model ’Functional Voting
Rules (FVRs)’ and in the third, ’Social Decision Rules (SDRs)’.

Following examples are to illustrate the three models. Throughout the examples,
whole set of alternatives is the given presentation hence X = A = {a, b, c, d} = X and
the grand coalition is the given coalition hence ω = N = {1, 2, 3, 4, 5}.

Example 1 (SCC) Let
−→
P ∈ Wn be as follows.

P1 P2 P3 P4 P5

a b a c a
d a, d b, c b, d b, c
b c d a d
c

Let F : A×Ω×Wn → C be defined as follows. Given
−→
P ∈ Wn, the social decision

on X ∈ A is the value that a choice function C(·) ∈ C determines by choosing the
element(s) in X which is declared best by at least a majority6 of the given ω ∈ Ω,

i.e., F (
−→
P ,X, ω) = F (

−→
P ,A,N) = F (

−→
P ) = {x ∈ A : n+(x,

−→
P ) ≥ �n/2�}. From the

above profile it can be seen that, n+(a,
−→
P ,X, ω) = n+(a,

−→
P ,A,N) = n+(a,

−→
P ) = 3

and n+(b,
−→
P ) = n+(c,

−→
P ) = 1 and n+(d,

−→
P ) = 0 . Since n+(a,

−→
P ) = 3 > �n/2� = 2

and �∃x ∈ A\{a} such that , n+(x,
−→
P ) ≥ �n/2�, F (

−→
P ) = C(A) = {a}.

Example 2 (FVR) (FVR) Let
−→
C ∈ Cn have the values on A as follows:

X C1(·) C2(·) C3(·) C4(·)
A {b, c} {a} {c} {c}

Let F : A × Ω × Cn → C be defined as follows. Given
−→
C the social decision

F (
−→
C ) is determined by a choice function C(·) ∈ C which chooses those elements from

the given presentation X that maximal number of voters7 (from the given coalition)

include in their choice sets, i.e., F (
−→
C ,X, ω) = F (

−→
C ,A,N) = F (

−→
C ) = {x ∈ X :

∀y ∈ A |V (x,A; {Ci(·)})| ≥ |V (y,A; {Ci(·)})|}. From the above profile it can be
seen that, |V (a,A; {Ci(·)})| = |V (b, A; {Ci(·)})| = 1 and |V (c, A; {Ci(·)})| = 3 and

|V (d,A; {Ci(·)})| = 0. So social decision on A is F (
−→
C ) = C(A) = {c} .

Example 3 (SDR) Let
−→
P ∈ Wn be as in Example ??.

Let F : A× Ω ×WN → B be defined as follows. Given
−→
P , the social decision is a

binary relation P ∈ B where F (
−→
P ) = P = {(x, y) ∈ X ×X : |V (x, y; {Pi})| ≥ �n/2�}.

6The SCC being described in the example is the well-known ’Simple Majority’ rule.
7The SCP being described is ’Approval Voting’.
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Since �n/2� = �5/2� = 3 , the social decision P = {(a, b), (a, c), (a, d), (b, d)(c, d)} or

P
a

b, c
d

Social decision P is a weak order in this example but this will not necessarily be
the case as will be seen.

3.1 Social Choice Correspondences

In this section, the individual opinions are represented as weak orders and the social
decision is constructed as a choice function. The Social Choice Correspondences studied
here are classified as follows:

1. Coalitional Pareto Rules,
2. Positional SCCs.

Throughout the following definitions the expressions are to hold ∀−→P ∈ Wn , ∀ω ∈ Ω
, ∀X ∈ A.

3.1.1 Coalitional Pareto Rules (Aleskerov, 1992)

In this subsection, given A ,N and
−→
P ∈ Wn social decision on presentation X, i.e.,

F (
−→
P /X) will be denoted as C(X). Throughout the definitions I will denote the set of

all coalitions with cardinality greater than or equal to k, i.e., I = {I ⊆ N : |I| = k}
where 1 ≤ k ≤ n and k is a positive integer.

1 Strong k-majoritarian q-Pareto rule

Let f(
−→
P /({i}, X); q) be defined as q top alternatives in

−→
P when contracted to

coalition {i} and presentation X, that is q top alternatives8 in Pi. The rule chooses an
alternative if it is among the top q alternatives in the preference of every agent in some
I ∈ I where I is constructed for a given k, i.e.,

C(X) =
⋃
I∈I

⋂
i∈I

f(
−→
P /({i}, X); q),

where f(
−→
P /({i}, X); q) = {x ∈ X : |X ∩ Di(x)| ≤ q}.

This rule can also be defined by using a different notion, that is, for each alternative
counting the number the voters who place it among top q and checking if this number
equals or exceeds k, i.e.,

C(X) = {x ∈ X : n+
q+1(x,

−→
P /X) ≥ k}.

8For the present model, it will be assumed that 0 ≤ q ≤ |A|−1. This is because q < 0 implies that
∀X C(X) = ∅ and q ≥ |A| implies that ∀X C(X) = X.
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Example 4 Consider the following example.

P1 P2 P3 P4 P5

a b d b a
d a, d a, b, c c b, c
b c a d
c d

Let k = 2 and q = 1. Hence I = {I ⊆ N : |I| ≥ 2}. Now consider I ′ = {1, 2} ∈ I.

Since f(X,
−→
P ; {1}, 1) ∩ f(X,

−→
P ; {2}, 1) = {a, d} ∩ {a, b, d} = {a, d}, {a, d} ⊆ C(A).

Now consider I ′′ = {3, 5} ∈ I. Since f(X,
−→
P ; {3}, 1)∩f(X,

−→
P ; {5}, 1) = A∩{a, b, c} =

{a, b, c}, {a, b, c} ⊆ C(A). Thus it is unnecessary to check the other coalitions in I,
hence C(A) = A.

2 Strongest k-majoritarian q-Pareto rule

Let f(
−→
P /(I,X); q) be defined as alternatives in profile

−→
P contracted to coalition I

and presentation X, having upper contour sets having an intersection with cardinality

smaller than or equal to q. Another way of saying this is, f(
−→
P /(I,X); q) is the set

of alternatives that are q-Pareto Optimal under
−→
P with repect to I and X. The rule

chooses an alternative if it is q-Pareto Optimal under
−→
P with repect to all the coalitions

I ∈ I, i.e.,

C(X) =
⋂
I∈I

f(
−→
P /(I,X); q),

where f(X,
−→
P ; I, q) = {x ∈ X :

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q}.

Example 5 Consider the following example.

P1 P2 P3 P4 P5

a b d b a
d a, d a, b a b
b c c c, d c, d
c

Let k = 3 and q = 0. Hence I = {I ⊆ N : |I| ≥ 3}. Now consider I ′ =

{1, 2, 3} ∈ I and c ∈ A. Since

∣∣∣∣ ⋂
i∈I′

A ∩ Di(c)

∣∣∣∣ = |{a, b, d}| = 3 > q = 0 that is

f(A,
−→
P ; I ′, 0) = {a, b, d}, hence c /∈ C(A). Then consider d ∈ A and I ′′ = {1, 4, 5}.

Since

∣∣∣∣ ⋂
i∈I′′

A ∩ Di(d)

∣∣∣∣ = |{a}| = 1 > q = 0, d /∈ C(A). Then consider a ∈ A. Since ∀i ∈

{1, 5} |A ∩ Di(a)| = 0, if 1 ∈ I or 5 ∈ I then

∣∣∣∣⋂
i∈I

A ∩ Di(a)

∣∣∣∣ = 0 ≤ q = 0 therefore
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consider only I ′′′ = {2, 3, 4}. Since

∣∣∣∣ ⋂
i∈I′′′

A ∩ Di(a)

∣∣∣∣ = |{b} ∩ {d} ∩ {b}| = 0 ≤ q = 0,

a ∈ C(A). Finally, consider b ∈ A. Since ∀i ∈ {2, 4} A ∩ Di(b) = 0, if 2 ∈ I or

4 ∈ I then

∣∣∣∣⋂
i∈I

A ∩ Di(b)

∣∣∣∣ = 0 ≤ q = 0 therefore consider only I ′v = {1, 3, 5}. Since∣∣∣∣ ⋂
i∈I′v

A ∩ Di(b)

∣∣∣∣ = |{a, d} ∩ {d} ∩ {a}| = 0 ≤ q = 0, b ∈ C(A). Hence C(A) = {a, b}.

3 Weak k-majoritarian q-Pareto rule

Let f(
−→
P /(I,X); q) be, as before, the set of alternatives that are q-Pareto Optimal

under
−→
P with repect to I and X. The rule chooses an alternative if it is q-Pareto

Optimal under
−→
P with repect to at least one coalition I ∈ I, i.e.,

C(X) =
⋃
I∈I

f(
−→
P /(I,X); q),

where f(X,
−→
P ; I, q) = {x ∈ X :

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q}.

Example 6 Consider the following example.

P1 P2 P3 P4 P5

a b d b a
d a, d a, b a b
b c c c, d c, d
c

Let k = 3 and q = 0. Hence I = {I ⊆ N : |I| ≥ 3}. Now consider I ′ = {1, 2, 3} ∈ I.

Since f(X,
−→
P ; I ′, 0) = {a, b, d}, {a, b, d} ⊆ C(A). Now consider c ∈ A. Since ∀i ∈

N A ∩ Di(c) ≥ 2, ∀I ∈ I
∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≥ 2 > q = 0 therefore c /∈ C(A) hence

C(A) = {a, b, d}.
Note that in each of CPRs, there is some ’penalty’ function which assigns some

numerical values to alternatives. These values represent the undesirability of the alter-
native to society and society decides on the alternatives by choosing the one(s) having
penalties below the critical value q.

3.1.2 Positional SCCs

For expository purposes, the given presentation will be the set of all alternatives A in

the definitions and hence C(A) = F (
−→
P ).

4 Plurality Rule
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The alternative declared the best by a maximal number of voters is chosen, i.e.,

C(A) = {a ∈ A : ∀x ∈ A n+(a,
−→
P ) ≥ n+(x,

−→
P )}.

Example 7 Consider the following example.

P1 P2 P3 P4 P5

a b d b a
d a, d a, b, c c b, c
b c a d
c d

In this example, ∀x ∈ A n+(a,
−→
P ) = n+(b,

−→
P ) = 2 ≥ n+(x,

−→
P ) hence C(A) =

{a, b}.
5 Inverse Plurality

The alternative declared worst by a minimal number of voters is chosen, i.e.,

a ∈ F (
−→
P ) ⇐⇒ [∀x ∈ A, n−(a,

−→
P ) ≤ n−(x,

−→
P )].

(Example omitted).

6 Borda Procedure

Given a profile of linear orders
−→
P , consider x ∈ A and let each voter assign a

score ri(x,
−→
P ) to x which is the cardinality of lower contour set under Pi ∈ −→

P , i.e.,

ri(x,
−→
P ) = |Li(x)| = |{b ∈ A : aPib}|. The sum of these scores through every voter

i ∈ N is called the Borda Count of the alternative. Then choose the one who has
highest Borda Count, i.e.,

C(A) = {a ∈ A : ∀x ∈ A r(a,
−→
P ) ≥ r(x,

−→
P )},

where r(a,
−→
P ) =

n∑
i=1

ri(a, Pi) and ri(a, Pi) = |Li(x)| .

Example 8 Consider the following example.

P1 P2 P3 P4 P5

a b d b a
d a, d a, b, c c b, c
b c a d
c d

In this example ∀x ∈ A r(a,
−→
P ) = r(b,

−→
P ) = 8 ≥ r(x,

−→
P ) hence C(A) = {a, b}.
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7 Inverse Borda Procedure

Compute the Borda Count of each alternative as defined in Borda Procedure. Then

eliminate the one who has lowest Borda Count and contract
−→
P to the remaininig set

and compute the new Borda Scores in the contracted profile. Then eliminate another
one similarly and go on like this until there is no alternative to eliminate from the
contracted set, i.e.,

Let r(a,
−→
P ) be the Borda Count of any a ∈ A under

−→
P .

Then eliminate c ∈ A where ∀x ∈ A, r(c,
−→
P ) ≤ r(x,

−→
P ).

and apply the same procedure to X = A\{c} and
−→
P /X .

Continue with the procedure by contracting the set in consideration until reaching
a social decision.

(Example omitted).

3.2 Functional Voting Rules

For expository purposes, the given presentation will be the set of all alternatives A in

the definitions and hence C(A) = F (
−→
C ).

8 Approval Voting9

Given a profile
−→
C ∈ Cn, every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. Then

for each alternative x ∈ A , the number of voters who choose x from A is computed.
The alternative with greatest such number is chosen if it is chosen at least by one voter,
i.e.,

C(A) = {x ∈
⋃
i∈N

Ci(A) : ∀y ∈ A
∣∣∣V (x,A;

−→
C )

∣∣∣ ≥ ∣∣∣V (y,A;
−→
C )

∣∣∣}.

Example 9 Consider the following example where A = {a, b, c}.

X C1(·) C2(·) C3(·) C4(·) C5(·) C(·)
A {b} {b} {a, b} {a} {a, c} {a, b}

In this example,
∣∣∣V (a,A;

−→
C )

∣∣∣ =
∣∣∣V (b, A;

−→
C )

∣∣∣ = 3 and
∣∣∣V (c, A;

−→
C })

∣∣∣ = 1 hence

C(A) = {a, b}.

9This version of Approval Voting is by (Sertel, 1988). Here, an alternative is chosen as social
decision, only if it is chosen by at least one of the voters whereas in Fishburn and Brams’ version
whole presentation is chosen if each of the voters declare empty choice.
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9 k-majority rules (Aizerman and Aleskerov, 1986)

Given
−→
C (·) every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. For each al-

ternative the number of voters who indicated that alternative in his/her choice set is
computed. The alternative is in the social decision C(A) if there exists at least k voters
who includes it in his/her choice set where 1 ≤ k ≤ n, i.e.,

C(A) = {x ∈ A : |V (x,A; {Ci(·)})| ≥ k} .

Example 10 Consider the following example where A = {a, b, c, d}.

X C1(·) C2(·) C3(·) C4(·) C5(·) C6(·)
A {b} {b} {a} {a} {c, a} {d}

Let k = 3 < n = 6. In this example, ∀x ∈ A\{a} |V (x,A; {Ci(·)})| < k = 3 and
|V (x,A; {Ci(·)})| = 3 ≥ k = 3 hence C(A) = {a}.

10 Voting with Veto (Aleskerov, forthcoming)

In this procedure, there are a number of individuals forming a non-empty coalition
ω0 that are called vetoers. They are less than the majority of N . For an alternative to
be chosen a majority of N including all the vetoers should choose it. So to be chosen
by all the vetoers is not enough for an alternative to be socially chosen but not to be
chosen by only one of the vetoers is enough for it to be out of social decision, i.e.,

x ∈ C(A) = F (
→
C) ⇔ (1) and (2) where (1) x ∈ ⋂

i∈ω0

Ci(A) and

(2) |VN(x,A; {Ci(·)})| ≥ �n/2� .

Example 11 Consider the following example where A = {a, b, c}.

X C1(·) C2(·) C3(·) C4(·) C5(·) C(·)
A {b, c} {a, b} {a, c} {a, c} {b} {b}

Let ω0 = {1, 2}. Since a /∈ C1(A) and c /∈ C2(A) and b ∈ C1(A) ∩ C2(A) and
|VN(b, A; {Ci(·)})| = 3 ≥ �5/2� = 3, C(A) = {b}.

3.3 Social Decision Rules

For expository purposes, the given presentation will be the set of all alternatives A in

the definitions and hence P = F (
−→
P ).
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11 Kemeny Rule

Given a profile of linear orders
−→
P ∈ LOn, first define distance matrices Ri cor-

responding to each voter i ∈ N . Then the rule will be defined in terms of distances
computed from these matrices.

Definition 1 ∀a, b ∈ A Ri = {ri
ab}and ri

ab = 1 if aPib, ri
ab = 0 otherwise.

Definition 2 Let d(Pi, Pj) denote the distance of a linear order to another linear order.

Then ∀a, b ∈ A ∀i, j ∈ N d(Pi, Pj) =
∑
a,b

∣∣ri
ab − rj

ab

∣∣ . The distance d(Pi,
−→
P ) of a lin-

ear order Pi ∈ −→
P to the profile

−→
P ∈ LOn, is defined as follows: d(Pi,

−→
P ) =

∑
j∈N

d(Pi, Pj)
.

In Kemeny rule the preference (linear order) with minimum distance to its profile
is the social decision from that profile, i.e.,

P = Pk such that ∀Pj ∈ −→
P d(Pk,

−→
P ) ≤ d(Pj,

−→
P ).

Example 12 Consider the following example where A = {x, y, z, w} and
N = {1, 2, 3}. For simplicity corresponding distance matrices are added.

−→
P

P1 P2 P3

x, y x, y x
z z, w y, z, w
w

R1

− x y z w
x − 0 1 1
y 0 − 1 1
z 0 0 − 1
w 0 0 0 −

R2

− x y z w
x − 0 1 1
y 0 − 1 1
z 0 0 − 0
w 0 0 0 −

R3

− x y z w
x − 1 1 1
y 0 − 0 0
z 0 0 − 0
w 0 0 0 −

Since
∑
k∈N

d(P2, Pk) = 4 <
∑
k∈N

d(P2, Pk) = 5 <
∑
k∈N

d(P3, Pk) = 7, P3 �= P = P1.
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12 (k1, k2)-majority (Aleskerov and Vladimirov, 1986)

Given a profile of weak orders
−→
P and N , in this procedure the pair (x, y) ∈ A × A

is included in social decision P if number of voters who include this pair in their
preferences is at least k1 and number of voters who does not include this pair in their
preferences is at most k2 where 1 ≤ k1 ≤ n and 0 ≤ k2 ≤ n, i.e.,

P =
{

(x, y) ∈ A × A :
∣∣∣V (x, y;

−→
P )

∣∣∣ ≥ k1and
∣∣∣V (x, y;

−→
P )

∣∣∣ ≤ k2.
}

(Example omitted).

13 Absolute k-majority

This procedure is a (k1, k2) procedure where k1 + k2 = n. Given a profile of weak

orders
−→
P and N , in this procedure the pair (x, y) ∈ A×A is included in social decision

P if number of voters who include this pair in their preferences is at least k independent
of other preferences where 1 ≤ k ≤ n, i.e.,

P =
{

(x, y) ∈ A × A :
∣∣∣V (x, y;

−→
P )

∣∣∣ ≥ k
}

.

Example 13 Consider the following example where A = {x, y, z}.

k − 2 1 1 n − k
x y y x, y, z
y x, z z
z x

In this example, |V (y, z; {Pi})| ≥ k and �∃(a, b) ∈ A × A\(x, y) such that
|V (a, b; {Pi})| ≥ k, hence P = {(y, z)}.

14 Relative k-majority

This procedure is a (k1, k2) procedure where k2 = 0. Given a profile of weak orders−→
P and N , in this procedure the pair (x, y) ∈ A × A is included in social decision P
if if number of voters who include this pair in their preferences is at least k and other
voters abstain to include (x, y) or (y, x) in their preferences, i.e.,

P = {(x, y) : |V (x, y; {Pi})| ≥ k and

card{j ∈ N : (y, x) /∈ Pj and (x, y) /∈ Pj} = n − k}.
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Example 14 Consider the following example where A = {x, y, z}.

k n − k
z x, y
x z
y

In this example, |V (x, y; {Pi})| ≥ k and card{j ∈ N : (y, x) /∈ Pj and (x, y) /∈
Pj} = n − k} and �∃(a, b) ∈ A × A\(x, y) such that |V (a, b; {Pi})| ≥ k and card{j ∈
N : (b, a) /∈ Pj and (a, b) /∈ Pj} = n − k}, hence P = {(y, z)}.

4 Normative and Rationality Constraints

4.1 Normative Conditions

This section will introduce normative conditions (NCs) for Social Choice Procedures
(SCPs) and some related theorems. NCs define subsets in the space of all SCPs. In
the first three subsections various NCs will be defined for each of the choice models
introduced in the previous chapter. Depending on the choice model, corresponding
conditions will be introduced. Since the ideas behind NCs do not differ in spirit in
any choice model the interpretations will only be given for NCs for Social Choice
Correspondences (SCCs). In most cases normative conditions are ’natural’ properties
that a SCP should satisfy such as ’the value of each voter is the same’, i.e., anonymity.

In the next three subsections NCs for SCCs, SDRs and FVRs will be introduced
respectively. Generally an NC has three versions for each of the social choice mod-
els, which all have the same spirit therefore the explanations will be made when the
condition is introduced the first time.

4.1.1 Normative Conditions for Social Choice Correspondences

In what follows, definitions of normative conditions for SCCs are introduced. From
now on the abbreviations given in parentheses are going to be used for the names of
the conditions. For the SCCs that satisfy the condition Q, ΛQ will be used such as ΛM

for classes of rules that satisfy Monotonicity. Since the social decision here is a choice

function, only C(X) will be used instead of F (
−→
P /X). For definitions of NCs for SCCs

every statement is true ∀−→P ,
−→
P ′ ∈ Wn and ∀x ∈ X, ∀X ∈ A, such that x ∈ X as

necessary. (When an addition is necessary this will be done explicitly).
Below the conditions 1-12 are from (Aleskerov, 1992) except Neutrality1 which is

the usual Neutrality to alternatives of May (1952), and the conditions 13 and 14 are
from (Moulin, 1989).
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1) Locality (L)

In general Locality condition carries the spirit of Arrow ’s Independence of Irrelevant
Alternatives. Here an alternative will not lose its position in the social decision as long
as its upper contour sets with respect to all the voters stay the same.

A rule F satisfies Locality condition if,

[∀i ∈ N X ∩ Di(x) = X ∩ D′
i(x)] ⇒ [x ∈ C(X) ⇔ x ∈ C ′(X)].

2) Positive non-imposedness (NI+)

Positive non-imposedness condition requires that no alternative in no presentation
can be ’banned’ or ’vetoed’ in a predetermined manner; so long as individuals want this
alternative (and declare their preferences accordingly) it is possible for the alternative
to be chosen.

A rule F satisfies Positive non-imposedness condition if,

∃−→P ∈ Wn such that x ∈ C(X).

3) Negative non-imposedness (NI−)

Negative non-imposedness requires that no alternative in no presentation can be put
in social decision in a predetermined manner; so long as individuals do not want this
alternative (and declare their preferences accordingly) it is possible for the alternative
not to be chosen.

A rule F satisfies Negative non-imposedness condition if,

∃−→P ∈ Wn such that x /∈ C(X).

Remark 2: All the Social Choice Correspondences that I will consider satisfy NI+

and NI− which can be easily checked by the reader.

4) Monotonicity (M)

Monotonicity is a strengthening of Locality condition. It requires the following.
Assume that an alternative is chosen from a presentation under a certain profile. Under
any other profile, as long as the position of the alternative do not happen to be worse for
any body, that is, for no individual preference the upper contour set of the alternative
became larger, the same alternative must be chosen from the same presentation.

A rule F satisfies Monotonicity condition if,

[∀i ∈ N X ∩ D′
i(x) ⊆ X ∩ Di(x)] ⇒ [x ∈ C(X) ⇒ x ∈ C ′(X)].

5) Neutrality1 (Ne1)
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Neutrality1 is the neutral treatment of the alternatives by the procedures. Then
no alternative is different from the other in terms of the name it has.

Let σ : A → A be a bijection and let σ(X) = {σ(x) ∈ A : x ∈ X}. A rule F satisifes
Neutrality1 if,

[∀i ∈ N σ(Li(x)) = L′
i(σ(x)) and σ(Di(x)) = D′

i(σ(x))]

⇒ [C ′(σ(X)) = σ(C(X))].

Remark 3: All the Social Correspondences that I will consider satisfy Ne1 which
can be easily checked by the reader.

6) Neutrality2 (Ne2)

Neutrality2 is a strengthening of Locality condition like Monotonicity. It requires
the rule to be independent of the name of the alternative and the presentation to which
it belongs.

A rule F satisifes Neutrality2 if,

[∀i ∈ N Di(x) ∩ X = Di(y) ∩ X ′] ⇒ [x ∈ C(X) ⇔ y ∈ C(X ′)],

and for any bijection σ : A → A,

[∀i ∈ N σ(X ∩ Di(x)) = σ(X) ∩ Di(σ(x))] ⇒

[x ∈ C(X) ⇔ σ(X) ∈ C(σ(X))].

Now the following Theorem can be introduced.

Theorem 1 (Aleskerov, 1992) ΛNe2 ⊂ ΛL and ΛM ⊂ ΛL.

7) Anonymity (An)

Anonymity condition requires the voters to be equally treated by the rule. Then
no voter is different from the other in terms of the name it has.

A rule F satisifes anonymity if where η : N → N is a bijection and {Pη(i)}η(i)∈N =
−→
P ′

one always has that C(X) = C ′(X).

Remark 4: All the Social Choice Correspondences that I will consider satisfy An
which can be easily checked by the reader.

Definition 3 The class of rules that satisifes NI+,NI−,M and Ne2 are called the
Central Class denoted by ΛC, i.e., ΛNI+ ∩ ΛNI− ∩ ΛM ∩ ΛNe2 = ΛC. The rules from
Central Class that satisfy An are called the Symmetrically Central Class denoted by
ΛSC, i.e., ΛC ∩ ΛAn = ΛSC.
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8) Positive non-dominance (ND+)

Positive non-dominance condition requires that, given a profile if an alternative is
top in at least one individual’s preference then it must be chosen.

A rule F satisfies Positive non-dominance condition if,

[∃i ∈ N such that Di(x) ∩ X = ∅] ⇒ x ∈ C(X).

9) Negative non-dominance (ND−)

Negative non-dominance condition requires that, given a profile if an alternative is
not top in even one individual’s preference then it must not be chosen.

A rule F satisfies Negative non-dominance condition if,

[�∃i ∈ N such that Di(x) ∩ X = ∅] ⇒ x /∈ C(X).

10) Unanimity (U)

Unanimity condition requires that, given a profile if an alternative is top in every-
body ’s preference then it must be chosen.

A rule F satisfies Unanimity condition if,

[∀i ∈ N X ∩ Di(x) = ∅] ⇒ x ∈ C(X),

or, equivalently,

[n+(x,
−→
P ) = n] ⇒ x ∈ C(X).

Now the following theorem can be introduced.

Theorem 2 (Aleskerov, 1992) ΛND+ ⊂ ΛU ⊂ ΛNI+
and ΛND− ⊂ ΛNI− .

11) No veto power1 (NVP1)

No veto power1 condition requires that, given a profile if there exists an alternative
that is preferred by every voter but one to a given alternative than the given alternative
must be out of social decision chosen.

A rule F satisfies No veto power1 condition if,

[∀i ∈ N\{j} xPiy and yPjx] ⇒ y /∈ C(X).

12) No veto power2 (NVP2)

No veto power2 condition requires that, given a profile if there exists an alternative
x that is preferred by every voter but one to a given alternative y than the y may
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be in social decision but can not drive others (especially x) out of social decision for
otherwise this one individual will have the right to veto x.

A rule F satisfies No veto power2condition if,

[∀i ∈ N\{j} xPiy and yPjx] ⇒ {y} �= C(X).

Theorem 3 ΛNV P1 ⊆ ΛNV P2 .

Proof : Assume that F ∈ ΛNV P1 . Then ∀−→P ∈ W ∀X ∈ A if ∀i ∈ N\{j} then
xPiy and yPjx, then {y} �= C(X) hence F ∈ ΛNV P2 .

13) Axiom of Reinforcement (RA)

Axiom of Reinforcement deals with two joinig subsocieties. If from both of the sub-
societies there are common alternatives in (sub-)social decisions then from the society
as a whole all those and only those alternatives should be the social decision.

A rule F satisifes Reinforcement Axiom if ∀ω1, ω2 ⊆ N such that N = ω1 ∪ ω2,
ω1 ∩ ω2 = ∅,

Cω1(A) ∩ Cω2(A) �= ∅ ⇒ CN(A) = Cω1(A) ∩ Cω2(A).

14) Axiom of Participation (PA)

Axiom of Participation deals with an additional individual joining to the existing
society. If someone else joins the society, then either he can not get a previously
chosen alternative out of the social decision or he can but this time replacing it with
an alternative which he/she more likes. Notice that ’or’ is meant to be inclusive in the
definition above.

A rule F satisifes Participation Axiom if,

x ∈ CN(A) ⇒ [(x ∈ CN∪{j}(A)) or (y ∈ CN∪{j}(A) and yPjx)].

4.1.2 Normative Conditions for Functional Voting Rules

In what follows, definitions of NCs for FVRs are introduced. From now on the abbre-
viations given in parentheses are going to be used for the names of the conditions and
for the FVRs that satisfy the condition ΛQ will be used such as ΛM for classes of rules
that satisfy Monotonicity. Since the social decision is a choice function, only C(X)

will be used instead of F (X,
−→
C ). For definitions of NCs for FVRs every statement is

true ∀−→C ,
−→
C ′ ∈ Cn and ∀x ∈ A, ∀X ∈ A, such that x ∈ X, as necessary. (When an

addition is necessary this will be done explicitly).
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1) Locality (L)

A rule F satisifes locality if,

[V (x,X;
−→
C ) = V (x,X;

−→
C ′)] ⇒ [ x ∈ C(X) ⇔ x ∈ C ′(X)].

2) Positive non-imposedness (NI+)

A rule F satisifes Positive non-imposedness if,

∃−→C ∈ Cn such that x ∈ C(X).

3) Negative non-imposedness (NI−)

A rule F satisifes Negative non-imposedness if,

∃{Ci(·)} ∈ Cn such that x /∈ C(X).

Remark 5: All the Functional Voting Rules that I will consider satisfy NI+ and
NI− which can be easily checked by the reader.

3) Monotonicity (M)

A rule F satisifes monotonicity if,

[V (x,X; {Ci(·)}) ⊆ V (x,X; {C ′
i(·)})] ⇒ [x ∈ C(X) ⇒ x ∈ C ′(X)].

4) Neutrality1 (Ne1)

Let σ : A → A be a bijection and σ(X) = {σ(x) ∈ A : x ∈ X}. A rule F satisifes
Neutrality1 if,

[∀i ∈ N C ′
i(σ(X)) = σ(Ci(X))] ⇒ [C ′(σ(X)) = σ(C(X))].

Remark 6: All the Functional Voting Rules that I will consider satisfy Ne1 which
can be easily checked by the reader.

5) Neutrality (Ne2)

A rule F satisifes neutrality if ∀−→C ,
−→
C ′ ∈ Cn and ∀x′, x′′ ∈ A, ∀X ′, X ′′ ∈ A, such

that x′ ∈ X ′ and x′′ ∈ X ′′,

[V (x′, X ′; {C ′
i(X

′)}) = V (x′′, X ′′; {C ′′
i (X ′′)})] ⇒

[x′ ∈ C ′(X ′) ⇔ x′′ ∈ C ′′(X ′′)].

Now the following theorem is introduced.
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Theorem 4 (Aleskerov, forthcoming) ΛM⊂ ΛL and ΛNe2⊂ ΛL.

6) Anonymity (An)

A rule F satisifes anonymity if ∀{Ci(·)} =
−→
C , {Cη(i)(·)} ∈ Cn and ∀X ∈ A where

η : N → N is a bijection,

F (X,
−→
C ) = C(X) = C ′(X) = F (X, {Cη(i)(·)}).

Remark 7: All the Functional Voting Rules that I will consider but Voting with
Veto procedure satisfies An which can be easily checked by the reader. The case of
Voting with Veto is investigated in the next Chapter.

Definition 4 The class of rules that satisifes NI+,NI−,M and Ne2 are called the
Central Class denoted by ΛC, i.e., ΛNI+ ∩ ΛNI− ∩ ΛM ∩ ΛNe2 = ΛC. The rules from
Central Class that satisfy An are called the Symmetrically Central Class denoted by
ΛSC, i.e., ΛC ∩ ΛAn = ΛSC.

7) Positive unanimity (Pareto principle) (U+)

A rule F satisifes Positive unanimity if,

∀i ∈ N x ∈ Ci(X) ⇒ x ∈ C(X).

8) Negative unanimity (U−)

A rule F satisifes Negative unanimity if,

∀i ∈ N x /∈ Ci(X) ⇒ x /∈ C(X).

Theorem 5 (Aleskerov, forthcoming) The class of rules that satisfy Positive (resp.
Negative) Unanimity is strictly embedded in the class of rules that satisfy Positive
(resp. Negative) non-imposedness, i.e., ΛU+ ⊂ ΛNI+

and ΛU− ⊂ ΛNI− .

9) No veto power (NV P )

A rule F satisifes No veto power if for any profile of single valued choice functions,
∀{Ci(·)} ∈ Ĉn, and ∀x ∈ A, ∀X ∈ A, such that x ∈ X,

[V (x,X; {Ci(·)}) = n − 1 and V (y,X; {Ci(·)}) = 1] ⇒ y /∈ C(X).

10) Axiom of Reinforcement

A rule F satisifes Axiom of Reinforcement ∀ω1, ω2 ⊆ N such that N = ω1 ∪ ω2,
ω1 ∩ ω2 = ∅ if,

Cω1(A) ∩ Cω2(A) �= ∅ ⇒ CN(A) = Cω1(A) ∩ Cω2(A).
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4.1.3 Normative Conditions for Social Decision Rules

In what follows, definitions of NCs for SDRs are introduced. These definitions will be
given in terms of the set of all alternatives A but they equally apply for any presentation
X ∈ A. From now on the abbreviations given in parentheses are going to be used for
the names of the conditions and for the SDRs that satisfy the condition ΛQ will be
used such as ΛM for classes of rules that satisfy Monotonicity. Since the social decision

is a binary relation, only P will be used instead of F (
−→
P ). For definitions of NCs for

SDRs every statement is true ∀−→P ,
−→
P ′ ∈ Wn and ∀x, y, z, w ∈ A as necessary. (When

an addition is necessary this will be done explicitly).

1) Quasilocality (Aleskerov and Vladimirov, 1986)

Quasilocality condition is different from Locality condition introduced by Aizeman
and Aleskerov (1984) in the sense that it not only considers the set of voters that
include pair (x, y) in his preference but also considers the ones that include (y, x). It
requires if set of voters for (x, y) and set of voters for (y, x) are both kept the same

between two profiles
−→
P ,

−→
P ′ then the pair (x, y) is included in P if and only if it is

included in P ′.
A rule F satisifes locality if,

[V (x, y;
−→
P ) = V (x, y;

−→
P ′) and V (y, x;

−→
P ) = V (y, x;

−→
P ′)]

⇒ [(x, y) ∈ P ⇔ (x, y) ∈ P ′].
2) Positive non-imposedness (NI+)

A rule F satisifes Positive non-imposedness if,

∃−→P ∈ Wn such that (x, y) ∈ P.

3) Negative non-imposedness (NI−)

A rule F satisifes Negative non-imposedness if,

∃−→P ∈ Wn such that (x, y) /∈ P.

Remark 8: All the Social Decision Rules that I will consider satisfy NI+ and NI−

which can be easily checked by the reader.

4) Monotonicity (M)

Monotonicity condition has been adapted to the condition of Quasilocality rather
than Locality.

A rule F satisifes Monotonicity if,
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(x, y) ∈ P and [V (x, y;
−→
P ) ⊆ V (x, y;

−→
P ′) and V (y, x;

−→
P ′) ⊆ V (y, x;

−→
P )]

⇒ [(x, y) ∈ P ′].
5) Neutrality1 (Ne1)

Let σ : A → A be a bijection and let σ(X) = {σ(x) ∈ A : x ∈ X}. A rule F satisifes
Neutrality1 if,

[∀i ∈ N σ(Li(x)) = L′
i(σ(x)) and σ(Di(x)) = D′

i(σ(x))]

⇒ [xPy ⇔ σ(x)P ′σ(y) where P ′ = F (A, σ(
−→
P ))].

Remark 9: All the Social Decision Rules that I will consider satisfy Ne1 which can
be easily checked by the reader.

6) Neutrality2 (Ne2)

Neutrality2 condition has been adapted to the condition of Quasilocality rather
than Locality.

A rule F satisifes Neutrality2 if10,

[∀i ∈ N V (x, y;
−→
P ) = V (z, w;

−→
P ′) and V (y, x;

−→
P ) = V (w, z;

−→
P ′)]

⇒ [(x, y) ∈ P ⇔ (z, w) ∈ P ].

Now the following theorem can be introduced.

Theorem 6 (Aleskerov and Vladimirov, 1986) ΛM ⊂ ΛL and ΛNe2 ⊂ ΛL.

7) Anonymity (An)

A rule F satisifes Anonymity if ∀−→P ,
−→
P ′ ∈ Wn and ∀X ∈ A where η : N → N is a

bijection and {Pη(i)}η(i)∈N =
−→
P ′, one always has P = P ′.

Remark 10: All the Social Decision Rules that I will consider satisfy An which can
be easily checked by the reader.

8) Positive Pareto (PP+)

Positive Pareto condition requires that if no voter includes a pair (y, x) and at least
one includes (x, y) in his preference then in the social decision the rule should include
(x, y).

10Since one can change the order of x and y, and z and w in the assumption of the condition , it is
obvious that the conclusion of the condition Ne2 can be written as (y, x) ∈ P ⇔ (w, z) ∈ P .
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A rule F satisifes Positive Pareto if,

[∀i ∈ N (y, x) /∈ Pi and ∃i0 ∈ N such that (x, y) ∈ Pi0 ]
⇒ [(x, y) ∈ P ].

9) Negative Pareto (PP−)

Negative Pareto condition requires that if no voter includes a pair (x, y) in his
preference then in the social decision the rule should not include (x, y).

A rule F satisifes Negative Pareto if,

[∀i ∈ N (x, y) /∈ Pi] ⇒ [(x, y) /∈ P ].

Remark 11: All the Social Decision Rules that I will consider satisfy PP− which
can be easily checked by the reader.

Definition 5 The class of social decision rules that satisify NI+,NI−,M, Ne2 and
PP− are called the Central Class denoted by ΛC, i.e., ΛNI+∩ΛNI−∩ΛM∩ΛNe2∩ΛPP−

=
ΛC. The rules from Central Class that satisfy An are called the Symmetrically Central
Class denoted by ΛSC, i.e., ΛC ∩ ΛAn = ΛSC.

10) Positive unanimity (U+)

Positive unanimity condition requires that if all the voters include a pair (x, y) in
their preferences then in the social decision the rule should include (x, y).

A rule F satisifes Positive unanimity if,

[∀i ∈ N (x, y) ∈ Pi] ⇒ [(x, y) ∈ P ].

11) Negative unanimity (U−)

Negative unanimity condition requires that if all the voters include a pair (y, x) in
their preferences then in the social decision the rule should not include (x, y).

A rule F satisifes Negative unanimity if,

[∀i ∈ N (y, x) ∈ Pi] ⇒ [(x, y) /∈ P ].

12) No veto Power (NVP)

No veto power condition requires that if all but one of the voters include a pair
(x, y) in their preferences then in the social decision the rule should include (x, y).

A rule F satisifes No veto power if,

[∀j ∈ N ∀i ∈ N\{j} (x, y) ∈ Pi] ⇒ [(x, y) ∈ P ].
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4.2 Rationality constraints

Normative conditions define subsets in the space of all SCPs. This section will introduce
Rationality Constraints (RCs) for Social Choice Procedures (SCPs) and some related
theorems. RCs are defined on choice functions or binary relations, that is the domains
and the ranges of the SCPs. To check whether a SCP ’satisfies’ a given RC, the domain
of the SCP will be fixed in terms of satisfying some RCs, then the social decision will
be checked to satisfy the given RC. When checking a FVR or a SDR the domain will
necessarily satisfy the given RC since the social decision has the same structure with
individual opinions.

Two of the choice models introduced have social decision in the form of a choice
function (Social Choice Correspondences and Functional Voting Rules) and one in the
form of a binary relation (Social Decision Rules). Depending on the form of the social
decision and the individual opinions in the choice model, corresponding RCs will be
introduced in the order above as in the previous section for the case of Normative
Conditions. While introducing definitions some basic theorems will be provided.

In the next subsection RCs for choice functions are defined and after this some
theorems about their mutual relations in the space of all choice functions C are given.
Then these theorems are utilized to establish relationships between SCCs and then
FVRs satisfying these RCs. Finally, the method for checking a SCC and a FVR to
satisfy a given rationality constraint is given. In the third subsection, the RCs for
binary relations are given and after this again some theorems about their mutual
relationships are given. Then these theorems are utilized to establish relationships
between SDRs satisfying these RCs. Finally, the method for checking a SDR to satisfy
a given rationality constraint is given.

4.2.1 Rationality Constraints for Social Choice Correspondences
and Functional Voting Rules

Definitions of Rationality Constraints In what follows, definitions of rationality
constraints for choice functions are introduced. From now on the abbreviations given
in parentheses are going to be used for the names of the constraints.

1) Non-emptiness11 (NE)

If the function C(·) never gives empty choice as a social decision, then it satisfies
condition NE, i.e., C(·) ∈ NE ⇔

∀X ∈ A C(X) �= ∅.

11The case of non-emptiness is investigated by many authors. The reader can be referred to (Arrow,
1959), (Sen, 1970), (Sen, 1974), (Samuelson, 1938),(Chernoff, 1954).
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2) Weak non-resoluteness (WNR) (Popov, B.V. and L.N. El’kin, 1989)

If the function C(·) chooses a proper subset from presentation A, then it satisfies
condition WNR, i.e., C(·) ∈ WNR ⇔

C(A) ⊂ A.

Conditions 3 to 8 are from (M. Aizerman and F. Aleskerov, 1995) and from refer-
ences cited there.

3) Heredity (H)

A choice function C(·) satisfies H, if an alternative that is chosen from a given set
is always chosen from any subset of this set in which it exists. This is because the
alternative is facing no different alternatives in the latter case and it once ’succeeded’
among them so for sake of ’consistency’ it should succeed in the ’smaller’ set. Formally,
C(·) ∈ H ⇔

∀X ′, X ∈ A, X ′ ⊆ X ⇒ C(X ′) ⊇ C(X) ∩ X ′.

This condition, for example, implies that if a player is chosen among the ’best’
players of the country then he/she should be chosen among the best from his/her city.
Note that the condition H does not rule out the possibility that the choice from the
smaller set X ′ also includes the alternatives not chosen from the larger set X, and that
for X ′ ∩ C(X) = ∅ the condition H imposes no constraints on C(X ′).

4) Arrow’s Choice Axiom (ACA)

If a choice function C(·) satisfies ACA then alternatives chosen from a given set
and only those alternatives (to the extent that they exist) must always be chosen from
any subset of this set. Furthermore, if choice from a ’larger’ set is empty then choice
from any of its subsets will be empty. Formally, C(·) ∈ ACA ⇔

∀X ′, X ∈ A, X ′ ⊆ X ⇒
{

if C(X) = ∅, then C(X ′) = ∅,
if C(X) ∩ X ′ �= ∅, then C(X ′) = C(X) ∩ X ′.

}

This condition, for example, implies that if a group of students are chosen among
the ’best’ students of the school then each should be chosen as the best from his/her
class and no one else which is not best in school should be chosen as best from their
classes. Note that this condition does not constrain choice from ’smaller’ set X ′, if
choice from the ’big’ set X does not contain any of its alternatives but non-empty, that
is if C(X) �= ∅, but C(X) ∩ X ′ = ∅.
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5) Concordance (C)

A choice function C(·) satisfies C, if an alternative that is chosen from two given
presentations is always chosen from the union of these two sets, i.e., C(·) ∈ C ⇔

∀X ′, X ∈ A, X = X ′ ∪ X ′′ ⇒ C(X) ⊇ C(X ′) ∩ C(X ′′).

This condition, for example, implies that if a player is chosen among the ’best’
players of both of given two classes, then he/she should be chosen the best from the
unification of two classes. Note that the choice from X = X ′∪X ′′ may have alternatives
that are not chosen at separate presentations of X ′ and X ′′, even if they are present
both in X ′ and X ′′.

6) Independence of Outcast (O)

A choice function C(·) satisfies O, if a subset X ′ of a given a presentation X contains
the choice set C(X) of X, then exactly the same choice set is always chosen from X ′.
Equivalently, if a subset X ′ of X is eliminated from X, where X ′ does not contain any
of the alternatives from C(X), then choice from the remaining set equals C(X) then
C(·) ∈ O.

∀X,X ′ ∈ A C(X) ⊆ X ′ ⊆ X ⇒ C(X ′) = C(X).

or, equivalently,

∀X,X ′ ∈ A X ′ ⊆ X \ C(X) ⇒ C(X \ X ′) = C(X).

This condition, for example, implies that if a group of students are chosen as the
’best’ students of the bigger class and if they are again all together in a smaller class,
again exactly they must be chosen as the best of the smaller class.

7) Inverse Condorcet Principle (Con−)

A choice function C(·) satisfies Con−, if an alternative x ∈ A, chosen from a
presentation X, is chosen from every pairwise presentation contained in X, i.e., C(·) ∈
Con− ⇔

∀X ∈ A, ∀y ∈ X x ∈ C(X) ⇒ x ∈ C({x, y}),
or, equivalently,

C(X) ⊆
⋂
y∈x

C({x, y}).

For example, the finalist teams of the basketball league must not have been beaten
by any other team in the league.
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8) Direct Condorcet Principle (Con+)

A choice function C(·) satisfies Con+, if an alternative x ∈ A, chosen from every
pairwise presentation contained in X is always chosen from a presentation X, i.e.,
C(·) ∈ Con+ ⇔

∀X ∈ A, ∀y ∈ X x ∈ C({x, y}) ⇒ x ∈ C(X),

or, equivalently, ⋂
y∈x

C({x, y}) ⊆ C(X).

For example, a team in the football league that have beaten every other team in
the league must be the champion of the league.

9) Dual Heredity (H−) (F. Aleskerov, J. Duggan 1993)

A choice function C(·) satisfies Dual Heredity constraint H−, if from a subset of a
presentation X a subset of the choice set C(X) is chosen, i.e.,

∀X ′, X ∈ A X ′ ⊆ X ⇒ C(X ′) ⊆ C(X).

As follows immediately from the definitions, Dual Heredity condition and Heredity
Condition are dual, that is, if the function C(·) satisfies H, the function C(X) =
X \ C(X) satisfies H−, and vice versa.

10) ACA in strong version (ACA∗)(M. Aizerman and Petnisk, 1995)

A choice function C(·) satisfies ACA∗, if there exists a set A∗ in A such that choice
set from any presentation contains those and only those elements that are also in A∗,
i.e.,

∀X ∈ A C(X) = X ∩ A∗ where A∗ ⊆ A.

11) Path Independence (PI) (Plott, 1973)

A choice function C(·) satisfies PI, if it is independent of the order that presenta-
tions are presented or whether they are presented one by one or all together, i.e.,

∀X1, X2 ∈ A, C(X1 ∪ X2) = C(C(X1) ∪ X2),

or, equivalently,

C(X1 ∪ X2) = C(C(X1) ∪ C(X2)).
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12) Fixed Point (FP) (Aleskerov, 1992)

A choice function C(·) satisfies FP, if it always chooses an alternative x from a
given presentation X and from all subsets of X as long as x exists in these subsets,
i.e.,

∀X ′, X ∈ A, ∃x ∈ X such that [x ∈ X ′ ⊆ X ⇒ x ∈ C(X ′)].

or, equivalently,

∀X ′, X ∈ A such that x ∈ X ′ ⊆ X x ∈
⋂
X′

C(X ′) �= ∅.

13) Weak Axiom of Revealed Preferences (WARP) (Samuelson, 1938) ( Houthakker,
1950 )

To define WARP it is necessary to construct a binary relation G in the following
manner.

xGy ⇔ ∃X ∈ A such that [x ∈ C(X) and y ∈ X\C(X)].

A choice function C(·) satisfies WARP if G is acyclic12.
For example the choice function of a housewife violates WARP if she chooses to

buy only an apple from the first set of fruits {cherry,apple} but chooses to buy banana
and cherry from the next set of fruits {banana,apple,cherry, grapes}.

4.2.2 Some theorems about rationality constraints(for SCCs and FVRs)
and their mutual relationships

Each of the rationality constraints separate the class of all choice functions C into two,
that is the ones satisfying it and others. These classes are interrelated in many ways.
The following theorems reveal these relationships. Note that the letter(s) denoting
the rationality constraint will also be used to denote the set of choice functions which
satisfy it and a bar above the letter will denote the set of choice functions which do not
satisfy the rationality constraint. For example H will denote the set of choice functions
which satisfy H, and H will denote the set of choice functions which do not satisfy H.

There are eight possible domains related to rationality constraints H, C and O.
The following theorem shows how they are related.

Theorem 7 (M. Aizerman and F. Aleskerov, 1995) (i) In the space C the properties
H, C and O are independent, that is, all eight domains

H ∩ C ∩ O; H ∩ C ∩ O, . . . ,H ∩ C ∩ O

12Acyclicity of a binary relation is that there exists no ’cycles’ of any length m throughout the
binary relation, i.e., G is acyclic iff ∀x1, ..., xm ∈ A �∃x1Gx2G...GxmGx1.
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are not empty.
(ii) The property ACA is stronger than each of the properties H,C and O, that

is, the domain ACA lies strictly within the intersection H ∩ C ∩ O.
(iii) In the subspace C+ of non-empty choice functions the domains H,C,O, and

ACA are related in the same way.
(iv) In the subspace Ĉ of single valued choice functions the domains H,ACA,and

O coincide, thus, making up the domain H = O = ACA located strictly within the
domain C, i.e., H − O − ACA ⊂ C.

The conjunction of two previously defined RCs, Con− and Con+ is called the
Condorcet Principle and denoted by PC. Next two theorems are about the PC and
conditions H and C.

Theorem 8 (Aizerman and Aleskerov, 1995) H ⊆ Con−and C ⊆ Con+.

Theorem 9 (Aizerman and Aleskerov, 1995) The domain of functions satisfying the
Condorcet principle coincides with the domain distinguished by the conjunction of the
conditions H and C, i.e., PC = Con− ∩ Con+ = H ∩ C.

Condition ACA in strong version (ACA∗) is related to other conditions introduced
above by the following theorem.

Theorem 10 (Aizerman and Aleskerov, 1995)The class of choice functions satisfying
ACA∗ is strictly embedded into the class ACA, and the functions of this class are
defined by the conjunction of the dual Heredity and Heredity axioms, i.e., ACA∗ =
H ∩ H− ⊂ ACA.

Remark 12: Note that in the case of nonempty choice the dual Heredity condition
defines a single ’point’ in the space of choice functions, the function C(X) = X for any
X ∈ A. In fact, since in this case C({x}) = {x} for any x and in virtue of Condition
H−, x ∈ C(X) for all x and X such that x ∈ X ∈ A, that is, C(X) = X. Similarly,
Condition ACA∗ defines the same function, because the set A∗ coincides with the set
A for nonempty choice.

Now the relation between the condition PI and the domains H, C and O in C is
in order.

Theorem 11 (Aizerman and Aleskerov, 1995) The domain of functions satisfying the
path-independence condition (PI) coincides in C with the intersection of H and O.

Theorem 12 (Aleskerov, 1992) The class of choice functions that satisfy condition
FP is strictly embedded in the class of choice functions that satisfy condition NE, i.e.,
FP ⊂ NE . Moreover, the set of all choice functions that satisfy condition H and
condition NE is strictly embedded in the class of choice functions that satisfy condition
FP, i.e., H ∩ NE ⊂ FP.
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Theorem 13 (Aizerman and Aleskerov, 1995) The class of choice functions that sat-
isfy ACA can be rationalized by a weak order P where ∀X ∈ A C(X) = {x ∈ X :
�∃y ∈ X such that yPx}.

Theorem 14 (Aizerman and Aleskerov, 1995) The domain of functions satisfying Ar-
row ’s Choice Axiom (ACA) is strictly embedded in the class of choice functions which
satisfy Weak axiom of revealed preferences (WARP), i.e., ACA ⊂ WARP.

Checking for a SCC and a FVR for satisfying a Rationality Constraint In
each of the definitions, the social decision is denoted by C(·) which can be defined as

C(X) = F (X,
−→
P ) for SCCs or C(X) = F (X,

−→
C ) for FVRs.

For a SCC to be checked for satisfying a rationality constraint the domain of defi-
nition Qd is assumed that the individual opinions are in the form of weak orders, i.e.,

∀i ∈ N Pi ∈ W, or in short
−→
P ∈ Wn where W is the set of all weak orders. Note that,

a weak ordered preference enables the individual to establish either the ’equivalency’
of any given two alternatives or ’dominance’ of one on another.

For FVRs, individual opinions are in general assumed to be satisfying Arrow ’s
Choice Axiom, Non-emptiness and Qr, i.e., Qd = ACA∩NE ∩Qr = ACA+ ∩Qr. The
two exceptions to this will be made when checking for Arrow ’s Choice Axiom in strong
version (ACA∗) and dual Heritage constraints. For sake of simplicity, the domain of
definition Qd which will be used for checking for a rationality constraint will be added
to the definition of the raionality constraint.

Definition 6 A given SCP is said to satisfy a given rationality constraint, if and
only if for any given profile from the domain of definition as stated above, the social
decision constructed according to the given SCP (which is a choice function or a binary
relation) satisfies the given rationality constraint. The set of all SCPs satisfying a given
rationality constraint Q will be denoted by Λ(Qd, Q).

For example for SCCs that satisfy the constraint H under the domain restricted to
RC Q, Λ(Q,H) will be used. When Qd = Wn, this will be considered as default and
hence Λ(Wn, H) = Λ(H) will be used.

Similarly, for FVRs that satisfy the constraint H under the domain restricted to
RC Q, Λ(Q,H) will be used. When Qd = (ACA+)n, this will be considered as default
and hence Λ(ACA+, H) = Λ(H) will be used.

Consider SCCs and the following example which explains how a SCC can belong
to the class of rules that satisfy a given rationality constraint.

Example 15 Let the rationality constraint under concern be non-emptiness (NE) of
social decision. Given a social choice correspondence F , and a profile of weak orders−→
P , if this SCC always leads to a non-empty choice set given any presentation, i.e.,
∀X ∈ A C(X) �= ∅, then this SCC satisfies the condition of non-emptiness, i.e.,
F ∈ Λ(NE).
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Now consider FVRs and the following example which explains how a FVR can
belong to the class of rules that satisfy a given rationality constraint.

Example 16 Let the rationality constraint under concern be weak non-resoluteness
(WNR) of social decision. Given a FVR F , and a profile of choice functions which
satisfy Arrow ’s Choice Axiom, Non-emptiness (ACA+) and WNR, if this FVR al-
ways leads to a proper subset of presentation A, i.e., ∀i ∈ N Ci(·) ∈ ACA+ ∩
WNR C(A) ⊂ A, then this FVR satisfies the condition of weak non-resoluteness,
i.e., F ∈ Λ(ACA+ ∩ WNR,WNR).

Theorem 15 In the space of social choice correpondences ΛSCC , the classes satisfying
all the rationality constraints cited above are related in the same manner as correspond-
ing rationality constraints are related hence the following are true:
(i) Λ(ACA) ⊂ Λ(H) ∩ Λ(C) ∩ Λ(O) ∩Λ(Con−) ∩ Λ(Con+) ∩ Λ(PI) ∩ Λ(WARP ),
(ii) Λ(H) ⊂ Λ(Con−) and Λ(C) ⊂ Λ(Con+) where Λ(H) ∩ Λ(C) = Λ(Con−) ∩
Λ(Con+),
(iii) Λ(H) ∩ Λ(O) = Λ(PI),
(iv) Λ(H) ∩ Λ(NE) ⊂ Λ(FP ) ⊂ Λ(NE),
(v) Λ(H) ∩ Λ(H−) = Λ(ACA∗).

Proof : For each of the above rationality constraints (WNR is not considered here)
the domain of definition is the same, that is Qd = Wn. Then the relationships among
the rules concerning these rationality constraints are reduced to relationships in the
range of the rule which is the set of choice functions, which can be examined by the
same theorems. �

Theorem 16 In the space of functional voting rules ΛFV R, the classes satisfying
Λ(ACA), Λ(H), Λ(C), Λ(O), Λ(Con−), Λ(Con+), Λ(PI), Λ(WARP ), Λ(NE) and
Λ(FP ) are related in the manner as corresponding rationality constraints are related
hence the following are true.
(i) Λ(ACA) ⊂ Λ(H) ∩ Λ(C) ∩ Λ(O) ∩Λ(Con−) ∩ Λ(Con+) ∩ Λ(PI) ∩ Λ(WARP ),
(ii) Λ(H) ⊂ Λ(Con−) and Λ(C) ⊂ Λ(Con+) where Λ(H) ∩ Λ(C) = Λ(Con−) ∩
Λ(Con+),
(iii) Λ(H) ∩ Λ(O) = Λ(PI), (iv) Λ(H) ∩ Λ(NE) ⊂ Λ(FP ) ⊂ Λ(NE).

Proof : For each of the rationality constraints ACA, H,C, O,Con−, Con+, P I, and
WARP , the domain of definitions are the same, that is Qd = (ACA+)n,since they are
all supersets of ACA+ by theorems ??, ??, ?? and ??. Then the relationships among
the rules concerning these rationality constraints are reduced to relationships in the
range of the rule which is the set of choice functions, which can be examined by the
same theorems. �

Theorem 17 In the space of functional voting rules ΛFV R, the classes satisfying
Λ(ACA∗, ACA∗), Λ(ACA∗, H) and Λ(ACA∗, H−) are related in the following manner:
Λ(ACA∗, H)∩ Λ(ACA∗, H−) = Λ(ACA∗, ACA∗).
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Proof : Since ACA ∩ H− = ACA∗ by Theorem ??, when checking for H− and
ACA∗ the domain of definition will be ACA∗. Since domain of definition is the same
for H− and ACA∗, the relation between rules satisfying these constraints is reduced to
the relation between social decisions. �

Finally Rationality Constraints for Social Decision Rules are introduced.

4.2.3 Rationality constraints for Social Decision Rules

In this model individual opinions are given in the form of binary relations. In social
choice theory it is convenient and illustrative to describe the binary relations under
consideration by some descriptive concepts such as the following: if two options x, y ∈ A
are related by P is written as xPy and is interpreted as ’the option x is preferred to
y’ or ’the option x is better than the option y.’ The properties of the binary relations
such as acyclicity, transitivity, etc., are the core properties of interest throughout the
course of this study. As will be clearer in the following subsubsection, those properties
of binary relations correspond to the generally accepted ideas of rationality.

Definitions of Rationality Constraints In what follows, definitions of RCs are
introduced. These are widely used properties in the literature. For a brief summary,
one can be referred to (Fishburn, 1972). P is a binary relation defined on A.

1) Irreflexivity

If for any alternative x, xPx is never true in a binary relation P , that is no alter-
native is preferred to itself P is irreflexive, i.e.,

∀x ∈ A (x, x) /∈ P.

2) Acyclicty

Cycles in a preference imply inconsistency in the decision making. If for any alter-
natives in A, x1Px2P...PxkPx1 is never true for any k > 0, that is, no alternative is
preferred to another which is preferred to another (and so on) such that at some point
an alternative turns out to be preferred to the very first alternative forming a cyclic
preference, then P is acyclic, i.e.,

�∃x1, x2, ...xk ∈ A such that x1Px2P...PxkPx1.

3) Transitivity

For P to be transitive, for any three alternatives, if first one is preferred to the
second and second one to the third, than it must be the case that first one is also
preferred to the third, i.e.,

∀x, y, z ∈ A [xPy and yPz] ⇒ xPz.
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4) Negative Transitivity

If for any three alternatives, if first one not is preferred to the second and second one
not preferred to the third, than it must be the case that first one is also not preferred
to the third, i.e.,

∀x, y, z ∈ A [ xPy and yPz] ⇒ xPz,

or equivalently,
∀x, y, z ∈ A xPy ⇒ [xPz or zPy].

Equivalently, if P includes a pair of alternatives (xPy), then for any third additional
alternative there must be a way to acouple it to this present pair, either to the top or
to the bottom (xPw or wPz).

5) Connectedness

If any two distinct alternatives are related then P is connected, i.e.,

∀x, y ∈ A, x �= y, xPy or yPx.

7) Asymmetrycity

If any two (not necessarily distinct) alternatives can not be related in both directions
then P is asymmetric, i.e.,

∀x, y ∈ A xPy ⇒ yPx.

Some theorems about rationality constraints (for SDRs) and their mutual
relationships

Definition 7 A binary relation is called
(i) a strict partial order, (ii) a weak order, (iii) a linear order, if it is respectively
(i) irreflexive and transitive, (ii) irreflexive, transitive and negatively transitive, (iii)
irreflexive, transitive and connected.
Below, the class of all acyclic relations are denoted by AR and the class of all strict
partial orders are denoted by SPO.

The interrelations between the classes follow immediately from their definitions.

Theorem 18 (Fishburn, 1972) Acyc ⊂ Asym.

Theorem 19 (Fishburn, 1972) LO ⊂ W ⊂ SPO ⊂ AR.
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Checking for a SDR for satisfying a Rationality Constraint For the SDRs
that satisfy the a rationality constraint such as Asymmetricity, Λ(Qd, Asym) will be
used. Note that when checking for connectedness the domain of definition is a profile
of linear orders, otherwise weak orders. Hence whenever (Qd)

n = Wn this will not be
stated, like for example, Λ(W , Acyc) = Λ(Acyc).

Example 17 Suppose as a rationality constraint I consider transitivity of social deci-
sion. Given a SDR, and a profile of weak orders (where each individual has transitive
preferences so that W ∩ Qr = W), does this SCP always lead to a transitive social
decision given any presentation X ∈ A or is it the case that there are some situations
in which the social decision is not transitive (intransitive). If there exists a profile such
that a given SDR results in intransitive empty choice then this SDR does not satisfy
the condition of transitivity, otherwise it does.

Theorem 20 [F ∈ Λ(Irref) ∩ Λ(Trv)] ⇒
[F ∈ Λ(Acyc) ∩ Λ(Asym)].

Proof : Let F ∈ Λ(Irref)∩Λ(Trv). Then ∀−→P ∈ Wn social decision P is a SPO.
Then P is acyclic and asymmetric by Theorem ??. Thus F ∈ Λ(Acyc) ∩ Λ(Asym). �

5 Comparative Analysis of Social Choice

Procedures

5.1 Comparative Analysis of Social Choice Correspondences

5.1.1 Normative Conditions on Coalitional Pareto Rules

In this section Fs, Fss and Fw will respectively denote Strong k-majority q-Pareto rule,
Strongest k-majority q-Pareto rule and Weak k-majority q-Pareto rule. Throughout
the text I = {I ⊆ N : |I| ≥ k} will denote the set of coalitions with cardinality
greater than or equal to k. Throughout the text the following convention will be used:
Xi,t = {xi, ..., xt} and notice that |Xi,t| = t − i + 1. If t = 0 or t < i because of values
of parameters then Xi,t = ∅.

Theorem 21 (Aleskerov, 1992) Fs, Fss and Fw all belong to Symmetrically Central
Class.13

Theorem 22 ∀−→P ∈ Wn ∀X ∈ A Cs(X) ⊆ Cw(X) and Css(X) ⊆ Cw(X).

Proof : Take any
−→
P ∈ Wn and any X ∈ A. Let x ∈ Cs(X). Then ∃I∗ ∈ I such

that ∀i ∈ I∗ |X ∩ Di(x)| ≤ q hence

∣∣∣∣ ⋂
i∈I∗

X ∩ Di(x)

∣∣∣∣ ≤ q and x ∈ Cw(X).

13In the referred paper these rules are analysed in a more general context.
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Now let x ∈ Css(X). Then ∀I ∈ I
∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q. Then ∃I∗ ∈ I∣∣∣∣ ⋂
i∈I∗

X ∩ Di(x)

∣∣∣∣ ≤ q. Hence x ∈ Cw(X).�

Theorem 23 ∀−→P ∈ Wn ∀X ∈ A k > n − k ⇒ Cs(X) ⊆ Css(X).

Proof : Let k > n − k and x ∈ Cs(X). Then ∃I ∈ I such that
∀i ∈ I |X ∩ Di(x)| ≤ q where |I| = k. Suppose x /∈ Css(X). Then ∃I ′ ∈ I such that∣∣∣∣ ⋂
i∈I′

X ∩ Di(x)

∣∣∣∣ > q where |I ′| = k. Then ∀i ∈ I ′ |X ∩ Di(x)| > q hence I ∩ I ′ = ∅.
But then |I| + |I ′| = 2k > n. Hence x ∈ Css(X).

Now let k ≤ n − k. Then consider the following example.

k n − k
x ·
· x

In this example, x ∈ Cs(X) but x /∈ Css(X) since ∃I ∈ I such that ∀i ∈
I |X ∩ Di(x)| = 0 ≤ q but ∃I ′ ∈ I such that

∣∣∣∣ ⋂
i∈I′

X ∩ Di(x)

∣∣∣∣ = |A| − 1 > q.

�

Theorem 24 k = 1 ⇔ Fs = Fw and k = n ⇔ Fss = Fw.

Proof : Let k = 1. Then ∀−→P ∈ Wn ∀X ∈ A Cs(X) = {x ∈ X : ∃i ∈ N such
that |X ∩ Di(x)| ≤ q} = Cw(X). Let 1 < k ≤ n. Then consider the following example.

1 n − 1
x ·
· x

In this example, x ∈ Cw(X) for any 1 < k < n since X ∩ D1(x) = ∅ and therefore

∃I ∈ I such that

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ = 0 where 1 ∈ I. But x /∈ Cs(X) for any 1 < k ≤ n

since ∃I ′ ∈ I such that ∀i ∈ I ′ |X ∩ Di(x)| = |X| − 1 > q where 1 /∈ I ′.
Now consider Fss. If k = n then I = {N} and therefore Css(X) = {x ∈ X :∣∣∣∣ ⋂

i∈N

X ∩ Di(x)

∣∣∣∣ ≤ q} = Cw(X). For the case of 1 ≤ k < n one can construct a counter

example in the following manner.

1 n − 1
x ·
· ·
· x
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In this example, x ∈ Cw(X) for any 1 ≤ k < n since X ∩ D1(x) = ∅ and therefore

∃I ∈ I such that

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ = 0 where 1 ∈ I. But x /∈ Css(X) for any 1 ≤ k < n

since ∃I ′ ∈ I such that

∣∣∣∣ ⋂
i∈I′

X ∩ Di(x)

∣∣∣∣ = |X| − 1 > q where 1 /∈ I ′. �

Theorem 25 Fs, Fss and Fw all satisfy Unanimity.

Proof : Take any x ∈ X ∈ A. Let ∀i ∈ N Di(x) ∩ X = ∅. Take any k where
1 ≤ k ≤ n and constuct I accordingly. Then ∀i ∈ I ∈ I |X ∩ Di(x)| = 0 ≤ q and so

x ∈ Cs(X) and ∀I ∈ I
∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ = 0 ≤ q and so x ∈ Css(X). Then x ∈ Cw(X)

by Theorem ??. �

Theorem 26 Strong n-Majority 0-Pareto rule is equal to Strongest 1-Majority 0-
Pareto rule.

Proof : Assume that the rules have the parameters stated above. Let x ∈ Cs(X).
Then ∀i ∈ N X ∩Di(x) = ∅ hence x ∈ Css(X) by Theorem ??. Let x /∈ Cs(X). Then
∃i′ ∈ N X ∩ Di′(x) �= ∅. Then consider Fss, when k = 1, ∃{i′} ∈ I∣∣∣∣∣ ⋂
i∈{i′}

X ∩ Di(x)

∣∣∣∣∣ > 0 hence x /∈ Css(X). �

1) Strong k-majority q-Pareto rule

Theorem 27 (i) Fs satisfies Positive non-dominance if and only if k = 1;
(ii) Fs satisfies Negative non-dominance if and only if q = 0;
(iii) If k = 1 then Fs does not satisfy No veto power1 but satisfies No veto power2

condition. If 1 < k ≤ n and q = 0 then Fs satisfies No veto power1 (hence Fs ∈ ΛNV P2

by Theorem ??). If 1 < k ≤ n and q > 0 Fs does not satisfy No veto power2 condition
(hence Fs /∈ ΛNV P1 by Theorem ??);

(iv) Fs satisfies Reinforcement Axiom if and only if k = n. Fs satisfies Participation
Axiom if and only if 1 ≤ k < n.

(k = 1 ⇒ Fs ∈ ΛND+
) Let k = 1. Then since

−→
P ∈ Wn, ∃i0 ∈ N such that

|X ∩ Di0(x)| = 0 ≤ q for some x ∈ X hence x ∈ Cs(X).
(1 < k ≤ n ⇒ Fs /∈ ΛND+

) Let 1 < k < n. Consider the following example.

1 n − 1
x ·
· ·
· x

In this example, since ∀I ∈ I ∃i ∈ I such that |X ∩ Di(x)| = |X| − 1 > q,
x /∈ C(X).
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(q = 0 ⇒ Fs ∈ ΛND−
) Take any 1 ≤ k ≤ n. Assume that ∀i ∈ N X ∩

Di(x) �= ∅. Then since �∃i ∈ N such that |X ∩ Di(x)| = 0, �∃I ∈ I such that
∀i ∈ I |X ∩ Di(x)| ≤ 0 hence x /∈ C(X).

(q ≥ 1 ⇒ Fs /∈ ΛND−
) Take any 1 ≤ k ≤ n. Consider the following example where

k = n ⇒ ∀i, j ∈ N Pi = Pj = P1 where D1(x) = ∅, D1(z) = {x} etc. as below.

k n − k
x y
z z
· ·

Since ∀i ∈ I ∀I ∈ I |X ∩ Di(z)| = 1 ≤ q, z ∈ C(X).
(k = 1 ⇒ Fs /∈ ΛNV P1) Consider the following example.

n − 1 1
x y
y x
· ·

In this example, y ∈ C(X) since ∃i ∈ N such that |X ∩ Di(y)| = 0 ≤ q.
(k = 1 ⇒ Fs ∈ ΛNV P2) Assume ∀i ∈ N\{j} xPiy and yPjx. Since ∃x0 ∈ X\{y}

such that |X ∩ Di0(x0)| = 0 ≤ q for some i0 ∈ N\{j}, x0 ∈ C(X) �= {y}.
(1 < k < n and q = 0 ⇒ Fs ∈ ΛNV P1) Let 1 < k < n and q = 0. Assume ∀i ∈ N\{j}

xPiy and yPjx. Take any 1 < k < n. Then �∃I ∈ I such that ∀i ∈ I |X ∩ Di(y)| = 0
hence y /∈ C(X). Since when 1 < k < n and q = 0 ⇒ Fs ∈ ΛNV P1 , Fs ∈ ΛNV P2 by
Theorem ??.

(1 < k < n and q > 0 ⇒ Fs /∈ ΛNV P1) Let 1 < k < n and q > 0. Consider the
following example.

n − 1 1
x y
y x
· ·

In this example, y ∈ C(X) since ∀i ∈ N |X ∩ Di(y)| ≤ 1 ≤ q.
(([1 < k < n and q > 0] and |X| ≥ 3q + 2) ⇒ Fs /∈ ΛNV P2) Consider the following

example.
n − k k − 1 1
X1,q+1 x X2q+1,3q

x y y
y Xq+2,2q x
· · ·

In this example C(X) = {y} since �∃I ∈ I such that ∀i ∈ I |X ∩ Di(x)| ≤ q for
any x ∈ X\{y} but ∃I ∈ I such that ∀i ∈ I |X ∩ Di(y)| ≤ q.

(k = n and q = 0 ⇒ Fs ∈ ΛNV P1) Since ∀i ∈ N\{j} xPiy, ∃i ∈ N such that
|X ∩ Di(y)| > 0 = q hence y /∈ C(X). Since when k = n and q = 0 ⇒ Fs ∈ ΛNV P1 ,
Fs ∈ ΛNV P2 by Theorem ??.
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(k = n and q > 0 ⇒ Fs /∈ ΛNV P1) Consider the following example.

n − 1 1
x y
y x
· ·

In this example, y ∈ C(X) since ∀i ∈ N |X ∩ Di(y)| ≤ 1 ≤ q.
(([k = n and q > 0] and |A| ≥ 2q + 1) ⇒ Fs /∈ ΛNV P2) Consider the following

example.
1 2 · · n − 1 n

X1,q−1 X1,q−1 · · X1,q−1 Xq,2q−1

x x · · x y
y y · · y x
· · · · · ·

In this example, C(X) = {y} since ∃i ∈ N such that ∀z ∈ X\{y} |X ∩ Di(z)| > q
but ∀i ∈ N |X ∩ Di(y)| ≤ q.

(1 ≤ k < n ⇒ Fs /∈ ΛRe) Let N1 ∪ N2 = N and N1 ∩ N2 = ∅. For the case of
parameters 1 ≤ k ≤ n − 3 consider the following example where I1 = {1, ..., k} and
n2 ≥ k.

I1 n1 − k
a c

X\{a, b} X\{b, c}
b b

n2

a, b
X\{a, b}

In this example, a ∈ CN1(X) since ∀i ∈ I1 |X ∩ Di(a)| = 0 ≤ q and a ∈
CN2(X) by Fs ∈ ΛU by Theorem ??. Hence a ∈ CN1(X) ∩ CN2(X) �= ∅. Since
∀i ∈ N |X ∩ Di(b)| = |X| − 1 > q, b /∈ CN1(X) and hence b /∈ CN1(X) ∩ CN2(X).
But since ∃I∗ ⊆ N2 ⊂ N such that ∀i ∈ I∗ |X ∩ Di(b)| = 0 ≤ q, hence b ∈ CN(X) �=
CN1(X) ∩ CN2(X).

For the cases of k = n−2 and k = n−1 consider the following example. Here when
k = n − 2, k1 = n1 − 2 and k2 = n2 − 2 and respectively when k = n − 1, k1 = n1 − 1
and k2 = n2 − 1.

k1 n1 − k1

a ·
· ·
· a

k2 n2 − k2

a ·
· ·
· a

In this example, a ∈ CN1(X) ∩ CN2(X) but a /∈ CN(X) since∀k ∈ {n − 2, n − 1}
(k1 +k2) < k where n = n1 +n2 and hence �∃I ∈ I such that ∀i ∈ I |X ∩ Di(a)| ≤ q.

(k = n ⇒ Fs ∈ ΛRe) Let N1∪N2 = N and N1∩N2 = ∅. Let a ∈ CN1(X)∩CN2(X) �=
∅. Then ∀i ∈ N1 ∪ N2 |X ∩ Di(a)| ≤ q and hence a ∈ CN(X). Now let a ∈ CN(A).
Then ∀i ∈ N1 ∪ N2 |X ∩ Di(a)| ≤ q and hence a ∈ CN1(X) ∩ CN2(X).

(1 ≤ k < n ⇒ Fs ∈ ΛPart) Let x ∈ CN(X). Then ∃I∗ ⊆ N such that |I∗| = k and
∀i ∈ I∗ |X ∩ Di(x)| ≤ q. Then since I∗ ⊆ N ∪ {j}, x ∈ CN∪{j}(X).
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(k = n and |X| ≥ 2q + 2 ⇒ Fs /∈ ΛPart) Consider the following example.

P1 P2 P3 · Pn Pj

X1,q X1,q X1,q · Xq+1,2q Xq+1,2q+1

x x x · x x
· · · · · ·

In this example, CN(X) = {x} since ∀i ∈ N |X ∩ Di(x)| = q ≤ q and ∀y ∈
X\{x} ∃i ∈ N such that |X ∩ Di(x)| ≥ q + 1 > q. But CN∪{j}(A) = ∅ since ∀y ∈
X ∃i ∈ N such that |X ∩ Di(x)| = q + 1 > q. �

2) Strongest k-majority q-Pareto rule

Theorem 28 (i) Fss satisfies Positive non-dominance condition if and onlt if k = n;
(ii) Fss satisfies Negative non-dominance condition if and only if k = 1 and q = 0;
(iii) If 1 ≤ k < n and q = 0 then Fss satisfies No veto power1 condition (hence

Fss ∈ ΛNV P2 by Theorem ??), and if k = n then Fss does not satisfy No veto power1
condition. When 1 ≤ k < n and q > 0 Fss does not satisfy No veto power2 condition.
If k = n then Fss satisfies No veto power2 condition;

(iv) Fss satisfies Reinforcement Axiom if and only if k = 1. Fss satisifes Partici-
pation Axiom.

Proof : (1 ≤ k < n ⇒ Fss /∈ ΛND+
) Consider the following example, the ’Voting

Paradox’ for the case of k = 1.
P1 P2 P3

a b c
b c a
c a b

In this example, since ∀x ∈ X ∃i ∈ N such that |X ∩ Di(x)| = 0 and ∃{j} ∈ I

such that

∣∣∣∣∣ ⋂
j∈{j}

X ∩ Dj(x)

∣∣∣∣∣ = |X| − 1 > q, C(X) = ∅. Consider the following example

for the case of 1 < k < n.

1 2(k − 1) n − 2k + 1

x X\{x} ·
y x

X\{x, y}
In this example x /∈ C(X) since 2(k − 1) ≥ k and hence ∃I ∈ I such that∣∣∣∣⋂

i∈I

X ∩ Di(x)

∣∣∣∣ = |X| − 1 > q.

(k = n ⇒ Fss ∈ ΛND+
) Since I = {N}, if |X ∩ Di(x)| = 0 for some i ∈ N then∣∣∣∣ ⋂

i∈N

X ∩ Di(x)

∣∣∣∣ = 0 ≤ q hence x ∈ C(X).
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(k = 1 and q = 0 ⇒ Fss ∈ ΛND−
) Since when k = n and q = 0 Fs ∈ ΛND−

by
Theorem ??, by Theorem ?? when k = 1 and q = 0 Fss ∈ ΛND−

.
(k = 1 and q > 0 ⇒ Fss /∈ ΛND−

) Consider the example below. In this example,
∀i ∈ N |X ∩ Di(y)| = 1 ≤ q hence y ∈ C(X).

(1 < k < n ⇒ Fss /∈ ΛND−
) Consider the following example.

1 k − 1 n − k
x z w
y y y

X\{x, y} X\{z, y} X\{w, y}

In this example, since ∀I ∈ I
∣∣∣∣⋂
i∈I

X ∩ Di(y)

∣∣∣∣ = 0 ≤ q, y ∈ C(X).

(k = n ⇒ Fss /∈ ΛND−
) Consider the following example.

1 n − 1
x z
y y
· ·

Since

∣∣∣∣ ⋂
i∈N

X ∩ Di(y)

∣∣∣∣ = 0 ≤ q and I = {N}, y ∈ C(X).

(k = 1 and q = 0 ⇒ Fss ∈ ΛNV P1) Since when k = n and q = 0 Fs ∈ ΛNV P1 by
Theorem ??, by Theorem ?? when k = 1 and q = 0 Fss ∈ ΛNV P1 . Since when k = 1
and q = 0 ⇒ Fss ∈ ΛNV P1 , Fss ∈ ΛNV P2 by Theorem ??.

(k = 1 and q > 0 ⇒ Fss /∈ ΛNV P1) Consider the following example.

n − 1 1
x y
y x
· ·

In this example, y ∈ C(X) since ∀{i} ∈ I
∣∣∣∣∣ ⋂
i∈{i}

X ∩ Di(y)

∣∣∣∣∣ ≤ 1 ≤ q,

(([1 ≤ k < n and q > 0] and |X| ≥ 2q + 1 ⇒ Fss /∈ ΛNV P2) Consider the following
example.

n − 1 1
x y
y xq

x1 xq+1

· ·
xq−1 x2q−1

· ·
In this example {y} = C(X).
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(1 < k < n and q = 0 ⇒ Fss ∈ ΛNV P1) Assume ∀i ∈ N\{j} xPiy and yPjx. Then

since ∃I∗ ∈ I such that I∗ ⊆ N\{j} and

∣∣∣∣ ⋂
i∈I∗

X ∩ Di(y)

∣∣∣∣ ≥ 1 > 0 = q, y /∈ C(X).

Since when 1 < k < n and q = 0 ⇒ Fss ∈ ΛNV P1 , Fss ∈ ΛNV P2 by Theorem ??.
(1 < k < n and q > 0 ⇒ Fss /∈ ΛNV P1) Consider the following example where

y ∈ C(X).
1 n − 1
y x
x y
· ·

(k = n ⇒ Fss /∈ ΛNV P1) Consider the following example where y ∈ C(X).

n − 1 1
x y
· ·
· ·

(k = n ⇒ Fss ∈ ΛNV P2) Assume ∀i ∈ N\{j} xPiy and yPjx. Since ∃x0 ∈ X
such that x0 �= y and |X ∩ Di0(x0)| = 0 for some i0 ∈ N\{j}, and since when k = n,
Fss ∈ ΛND+

, x0 ∈ C(X) �= {y}.
(k = 1 ⇒ F ∈ ΛRe) Let N1 ∪ N2 = N and N1 ∩ N2 = ∅. Let x ∈ CN1(X) ∩

CN2(X) �= ∅. Then ∀j ∈ N1 |X ∩ Dj(x)| ≤ q and ∀t ∈ N2 |X ∩ Dt(x)| ≤ q and
hence ∀i ∈ N |X ∩ Di(x)| ≤ q. Then x ∈ CN(X). Now let x ∈ CN(X). Then ∀i ∈
N |X ∩ Di(x)| ≤ q. Then ∀j ∈ N1 |X ∩ Dj(x)| ≤ q and ∀t ∈ N2 |X ∩ Dt(x)| ≤ q
and hence x ∈ CN1(X) ∩ CN2(X).

(1 < k < n ⇒ Fss /∈ ΛRe) Let N1∪N2 = N and N1∩N2 = ∅. Consider the following
example where ni − �k/2� ≥ k where i ∈ {1, 2}.

n1 − �k/2� �k/2�
a X\{a}
· a
·

�k/2� n2 − �k/2�
X\{a} a

a ·
·

In this example, a ∈ CN1(X) since ∀I ∈ I1

∣∣∣∣⋂
i∈I

X ∩ Di(a)

∣∣∣∣ = 0 ≤ q and a ∈

CN2(X) since ∀I ∈ I2

∣∣∣∣⋂
i∈I

X ∩ Di(a)

∣∣∣∣ = 0 ≤ q and hence a ∈ CN1(X) ∩ CN2(X) �= ∅.

But since 2 �k/2� ≥ k, ∃I ∈ I such that

∣∣∣∣ ⋂
i∈I1

X ∩ Di(a)

∣∣∣∣ = |X| − 1 > q and hence

a /∈ CN(X).
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(k = n ⇒ Fss /∈ ΛRe) Let N1 ∪ N2 = N and N1 ∩ N2 = ∅. Consider the following
example.

1 n1 − 1
X\{a} b

a X\{a, b}
a

1 n2 − 1
a b

X\{a} a
X\{a, b}

In this example, b ∈ CN1(X) ∩ CN2(X) �= ∅ since Fss ∈ ΛND+
by Theorem ??.

Similarly, a ∈ CN(X) but a /∈ CN1(X) since

∣∣∣∣ ⋂
i∈N1

X ∩ Di(a)

∣∣∣∣ = |X| − 1 > q.

(Fss ∈ ΛPart) Let x ∈ CN(X). Then ∀I ∈ IN

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q. Suppose

x /∈ CN∪{j}(X). Then ∃I∗ ∈ IN∪{j} such that j ∈ I∗ and

∣∣∣∣ ⋂
i∈I∗

X ∩ Di(x)

∣∣∣∣ > q. But∣∣∣∣ ⋂
i∈I∗

X ∩ Di(x)

∣∣∣∣ =

∣∣∣∣∣(⋂
i∈I

X ∩ Di(x)) ∩ (
⋂

i∈{j}
X ∩ Di(x))

∣∣∣∣∣ ≤ q for some I ∈ IN . So there

is a contradiction and hence x ∈ CN∪{j}(X). �

3) Weak k-majority q-Pareto rule

Theorem 29 (i) Fw satisfies Positive non-dominance;
(ii) Fw satisfies Negative non-dominance condition if and only if k = 1 and q = 0;
(iii) Fw satisfies No veto power2 condition but it does not satisfy No veto power1

condition;
(iv) Fw does not satisfy Reinforcement and Fw satisfies Participation Axioms.

(Fw ∈ ΛND+
) Let k = 1. Since Fs ∈ ΛND+

when k = 1,by Theorem ??, Fw ∈ ΛND+
.

Let 1 < k < n. Since if ∃i ∈ N |X ∩ Di(x)| = 0 ≤ q then ∃I ∈ I such that∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ = 0 ≤ q where i ∈ I and hence x ∈ C(X). Let k = n. Since Fss

∈ ΛND+
when k = n,by Theorem ??, Fw ∈ ΛND+

.
(k = 1 and q = 0 ⇒ Fw ∈ ΛND−

) Since when k = 1 and q = 0, Fs ∈ ΛND−
, by

Theorem ??, Fw ∈ ΛND−
.

(k = 1 and q > 0 ⇒ Fw /∈ ΛND−
) Since when k = 1 and q > 0, Fs /∈ ΛND−

, by
Theorem ??, Fw /∈ ΛND−

.
(1 < k < n and q = 0 ⇒ Fw /∈ ΛND−

) Since when 1 < k < n and q = 0, Fss

/∈ ΛND−
and by Theorem ?? Css(X) ⊆ Cw(X), Fw /∈ ΛND−

.
(1 ≤ k < n and q > 0 ⇒ Fw /∈ ΛND−

) Since when 1 < k < n and q > 0, Fss, Fs

/∈ ΛND−
, and by Theorem ?? Css(X) ⊆ Cw(X) and Cs(X) ⊆ Cw(X), Fw /∈ ΛND−

.
(k = n ⇒ Fw /∈ ΛND−

) Since when k = n, Fss /∈ ΛND−
, by Theorem ??, Fw

/∈ ΛND−
.

(k = 1 ⇒ Fw /∈ ΛNV P1) Since when k = 1, Fs /∈ ΛNV P1 , by Theorem ??, Fw

/∈ ΛNV P1 .
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(k = 1 ⇒ Fw ∈ ΛNV P2) Since when k = 1, Fs ∈ ΛNV P2 , by Theorem ??, Fw ∈
ΛNV P2 .

(1 < k < n and q = 0 ⇒ Fw /∈ ΛNV P1) Consider the following example.

n − 1 1
x y
· ·
· ·

In this example, y ∈ C(X) since Fw ∈ ΛND+
by Theorem ??.

(1 < k < n and q > 0 ⇒ Fw /∈ ΛNV P1) Since when 1 < k < n and q > 0 ⇒ Fs /∈
ΛNV P1 and by Theorem ?? Cs(X) ⊆ Cw(X), Fw /∈ ΛNV P1 .

(1 < k < n ⇒ Fw ∈ ΛNV P2) Assume ∀i ∈ N\{j} xPiy and yPjx. Since ∃x0 ∈ X
such that x0 �= y and |X ∩ Di0(x0)| = 0 ≤ q for some i0 ∈ N, and since Fw ∈ ΛND+

,
x0 ∈ C(X) �= {y}.

(k = n ⇒ Fw /∈ ΛNV P1) Since when k = n, Fss /∈ ΛNV P1 , by Theorem ??, Fw

/∈ ΛNV P1 .
(k = n ⇒ Fw ∈ ΛNV P2) Since when k = 1, Fss ∈ ΛNV P2 , by Theorem ??, Fw ∈

ΛNV P2 .
(Fw /∈ ΛRe) Let N1 ∪ N2 = N and N1 ∩ N2 = ∅. Consider the following example.

k n1 − k
b ·

X\{a, b} ·
a a

1 n2 − 1
a b
b ·
· ·

In this example, b ∈ CN1(X) ∩ CN2(X) �= ∅ since Fw ∈ ΛND+
by Theorem ??.

But a ∈ CN(X) since Fw ∈ ΛND+
by Theorem ?? and a /∈ CN1(X) since ∀I ∈

I1

∣∣∣∣⋂
i∈I

X ∩ Di(a)

∣∣∣∣ = |X| − 1 > q.

(Fw ∈ ΛPart) Let x ∈ CN(X). Then ∃I∗ ∈ IN

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q. Then ∃I∗ ∈

IN∪{j} such that

∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ ≤ q. Hence x ∈ CN∪{j}(X). �

5.1.2 Rationality constraints on CPRs

General Results on Coalitional Pareto Rules and Rationality Constraints

Theorem 30 ∀F ∈ {Fs, Fss, Fw} F ∈ ΛND+ ⇒ F ∈ Λ(NE).

Proof : Let F ∈ ΛND+
. Then if ∃i ∈ N such that |X ∩ Di(x)| = 0 for some x ∈ X,

x ∈ C(X). But ∀−→P ∈ Wn ∃Pi ∈ −→
P such that |X ∩ Di(x)| = 0 for some x ∈ X hence

x ∈ C(X) �= ∅. �
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Theorem 31 (Aleskerov, 1992) Fs, Fss and Fw are rules14 that belong to Λ(H).

Theorem 32 When 0 < q < |A| − 1, Fs, Fss and Fw are rules that do not belong to
Λ(Con+).

Proof : Let ∀i ∈ N ∀y ∈ A\{x} yPix. Let 0 < q < |A| − 1. Consider Fs. Since
∀i ∈ N |A ∩ Di(x)| = |A| − 1 > q, �∃I ∈ I such that ∀i ∈ I |A ∩ Di(x)| ≤ q for
any 1 ≤ k ≤ n, hence x /∈ Cs(A). But ∀y ∈ A\{x} x ∈ C({x, y}) since ∀i ∈ N
|{x, y} ∩ Di(x)| = 1 ≤ q.

Consider Fw and Fss. Since ∀i ∈ N |A ∩ Di(x)| = |A| − 1, ∀I ∈ I∣∣∣∣⋂
i∈I

A ∩ Di(x)

∣∣∣∣ = |A\{x}| = |A| − 1 > q for any 1 ≤ k ≤ n, hence x /∈ Cw(A)

and hence x /∈ Css(A) by Theorem ??. But ∀y ∈ A\{x} x ∈ Css({x, y}) since∣∣∣∣⋂
i∈I

{x, y} ∩ Di(x)

∣∣∣∣ = 1 ≤ q and hence ∀y ∈ A x ∈ Cw({x, y}) by Theorem ??.

When 0 < q < |A| − 1, since Fs, Fw, Fss /∈ Λ(Con+), Fs, Fw, Fss /∈ Λ(C). �

Theorem 33 (Aleskerov, 1992) Concordance condition is satisfied by a rule belonging
to Symmetrically Central Class if and only if it is Strong n-Majority 0-Pareto rule (or
equivalently Strongest 1-Majority 0-Pareto rule)15 or Strongest k-Majority 0-Pareto
rule where 1 < k < n.

Proof : The proof of the statement for Fs when k = n and q = 0 can be found in
(Aleskerov,1992). The latter result is not found in the original theorem therefore its
proof follows. Consider Fss and let q = 0 and 1 < k < n. Let x ∈ C(X1)∩C(X2). Then
�∃y1 ∈ X1 such that |V (y1, x; {Pi})| ≥ k and �∃y2 ∈ X2 such that |V (y2, x; {Pi})| ≥
k.Then ∀y ∈ X1 ∪ X2 |V (y, x; {Pi})| < k. Hence ∀I ∈ I

∣∣∣∣⋂
i∈I

(X1 ∪ X2) ∩ Di(x)

∣∣∣∣ =

0 ≤ q = 0. Hence x ∈ C(X1 ∪ X2). �

Remark 13 : Direct Condorcet condition is satisfied by a rule belonging to set
{Fs, Fw, Fss} if and only if it satisfies Concordance condition since all of these rules
belong to Λ(H) and Λ(H) ∩ Λ(Con+) ⊂ Λ(C).

Theorem 34 (Aleskerov, 1992) In Symmetrically Central Class, no rule satisfies Ar-
row ’s Choice Axiom and only Weak k-majority q-Pareto satisfies Independence of
Outcast condition.

Remark 14 : Since I have PI = H ∩ O by Theorem ??, from the Symmetrically
Central Class Path Independence condition is satisfied by only Weak k-majority q-
Pareto rule.

14In the referred paper these rules are analysed in a more general context.
15In the referred paper, another equivalent form of the rule, ’Condorcet Operator’ is stated as the

only rule satisfying Concordance.
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Remark 15 : By Theorem ?? Fs satisfies Path Independence condition when k = 1
and Fss satisfies Path Independence condition when k = n.

Remark 16 : By Theorem ?? since Fs, Fss, Fw /∈ Λ(ACA) but Fs, Fss, Fw ∈ Λ(H),
Fs, Fss, Fw /∈ Λ(ACA∗) and Fs, Fss, Fw /∈ Λ(H−). �

Theorem 35 ∀F ∈ Λ(H) F ∈ Λ(NE) ⇔ F ∈ Λ(FP ).

Proof : Take any F ∈ Λ(H). Assume F ∈ Λ(NE). Then ∀−→P ∈ Wn C(·) ∈
NE ∩ H = H+ ⊂ FP and hence F ∈ Λ(FP ). Now assume F ∈ Λ(FP ). Since

∀−→P ∈ Wn C(·) ∈ FP ⊂ NE, F ∈ Λ(NE). �

Remark 17 : ∀F ∈ {Fs, Fss, Fw} F ∈ Λ(H) by Theorem ??.

1) Strong k-majority q-Pareto rule

Theorem 36 (i) Fs ∈ Λ(NE) ⇔ |A| ≥ �n/(k − 1)� (q + 1) and Fs ∈ Λ(NE) ⇔ Fs ∈
Λ(FP ) by Theorem ??;

(ii) Fs satisfies Weak non-resoluteness condition if and only if k = n and q = 0;
(iii) Fs satisfies Weak Axiom of Revealed Preferences if and only if k = n and

q = 0.

Proof : (Fs ∈ Λ(NE) ⇔ |A| ≥ �n/(k − 1)� (q + 1)) First assume Fs /∈ Λ(NE).

Then ∃−→P ∈ Wn such that C(A) = ∅. Denote n+
j+1(x,

−→
P ) = card{i ∈ N : |A ∩ Di(x)| ≤

j}. Since C(A) = ∅, ∀x ∈ A n+
q+1(x,

−→
P ) < k. By

−→
P ∈ Wn,

∑
x∈A

n+
q+1(x,

−→
P ) =

n(q + 1) ≤ |A| (k − 1). Hence |A| ≥ �n/(k − 1)� (q + 1). Now assume that |A| ≥
�n/(k − 1)� (q + 1). First consider the following example for the case of n = 5 and
k = 3 hence �n/(k − 1)� = 3. Here |A| ≥ 3q + 3.

2 2 1
X1,q+1 Xq+2,2(q+1) X2(q+1)+1,3(q+1)

· · ·
In this example, ∀x ∈ A n+

q+1(x,
−→
P ) < k = 3 hence C(A) = ∅. Note that N is

partitioned into �n/(k − 1)� = 3 coalitions, where all but one coalition have cardinality
k − 1 = 2. The remaining coalition has cardinality n − (�n/(k − 1)� − 1)(k − 1) =
5 − (3 − 1)(3 − 1) = 1.

To generalize this example to the case of 1 < k ≤ n apply the following procedure.
Start with partitioning N into coalitions with cardinality k−1 as long as this is possible.
If n is not divisible by k − 1 then there will remain one coalition with cardinality
n− (�n/(k − 1)� − 1)(k − 1) < k − 1. Then construct the following structure in which
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there are �n/(k − 1)� = s coalitions with their respective cardinalities k1 = k2 = ... =
ks−1 = k − 1and ks = n − (�n/(k − 1)� − 1)(k − 1).

k1 k2 ks

X1, q+1 Xq+2, 2(q+1) X(s−1)(q+1)+1, s(q+1)

· · ·

In this example, C(A) = ∅ since voters of any two different coalitions have non-
intersecting top q + 1 alternatives and no single coalition has cardinality greater than
or equal to k.

For the case of k = 1 since ∀−→P ∈ Wn, ∃x ∈ A such that n+(x,
−→
P ) ≥ k = 1

whenever |A| < ∞, hence x ∈ C(A) �= ∅.
(1 ≤ k < n ⇒ Fs /∈ Λ(WNR)) For the case of 1 ≤ k < n and q > 0 consider the

following example.
1 n − 1

A\{x} x
x A\{x}

In this example C(A) = A. For the case of 1 ≤ k < n − 1 and q = 0 consider the
following example where n − k ≥ k.

k n − k
x A\{x}

A\{x} x

In this example C(A) = A. For the case of k = n − 1 and q = 0 consider the
following example where n = 3.

P1 P2 P3

x, y y, z x, z
z x y

In this example C(A) = A.
(k = n and q > 0 ⇒ Fs /∈ Λ(WNR)) For the case of k = n and q > 0 consider the

following example.
P1 P2 · Pn

x x · x
A\{x} A\{x} · A\{x}

In this example C(A) = A.
(k = n and q = 0 ⇒ Fs ∈ Λ(WNR)) Since by assumption ∀i ∈ N Pi �= ∅, ∃i ∈ N

such that ∃x ∈ A such that |A ∩ Di(x)| �= ∅ hence x ∈ C(A).
(([k = 1 and q ≥ 0] and |A| ≥ q + 4) ⇒ (Fs /∈ Λ(WARP )) Consider the example

below. In this example, x ∈ C(X1) and z /∈ C(X1) but x /∈ C(X2) and z ∈ C(X2).
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(([1 < k < n − 1 and q > 0] and |A| ≥ q + 4) ⇒ (Fs /∈ Λ(WARP )) Consider the
following example where n − k ≥ k, X1 = {x, y, z} ∪ X1,q and X2 = {x,w, z} ∪ X1,q.

k n − k
X1,q y
w X1,q

x z
y w
z x
· ·

In this example, x ∈ C(X1) and z /∈ C(X1) but x /∈ C(X2) and z ∈ C(X2).
(([1 < k < n − 1 and q = 0] and |A| ≥ 3) ⇒ (Fs /∈ Λ(WARP )) Consider the

following example.
k − 1 k − 1 k − 1

x y z
y z x
z x y
· · ·

In this example, C({x, y}) = {x}, and C({y, z}) = {y} but C({x, z}) = {z}.
((k = n − 1 and |A| ≥ q + 4) ⇒ (Fs /∈ Λ(WARP )) Consider the following example

for the case of q = 0 where X1 = {x, y, z} and X2 = {x,w, z}.

1 n − 2 1
w x, y, z y
x · z
· · x
· · ·

In this example, x ∈ C(X1) and z /∈ C(X1) but x /∈ C(X2) and z ∈ C(X2).
For the case of k = 1, consider the following example where X1,0 = ∅, X1 =

{x, y, z} ∪ X1,q and X2 = {x,w} ∪ X1,q.

1 n − 2 1
x, y w y, z, w

X1,q−1 X1,q−1 X1,q−1

xq xq xq

· x x
· z ·
· · ·

In this example, x ∈ C(X1) and xq /∈ C(X1) but x /∈ C(X2) and xq ∈ C(X2).
((k = n and q > 0) ⇒ (Fs /∈ Λ(WARP )) Consider the following example. Here

|A| ≥ 2q + 2, X1 = {x} ∪ X1,q+1 and X2 = {x} ∪ X1,q ∪ Xq+2,2q+1.
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1 n − 1
X1,q+1 x

x Xq+2,2q+1

Xq+2,2q+1 X1,q+1

· ·
In this example, x1 ∈ C(X1) and x /∈ C(X1) but x ∈ C(X2) and x1 /∈ C(X2).
(k = n and q = 0 ⇒ Fs ∈ Λ(WARP )) Let k = n and q = 0. Suppose that

∃x1, ..., xm such that

x1 ∈ C(X1) and x2 ∈ X1\C(X1)
x2 ∈ C(X2) and x3 ∈ X2\C(X2)

·
·

xm ∈ C(Xm) and x1 ∈ Xm\C(Xm).

When k = n and q = 0, whenever x ∈ C(X) then ∀y ∈ X �∃i ∈ N such that
yPix. Futhermore z /∈ C(X) ⇒ ∃i0 ∈ N such that ∃y ∈ X such that yPi0z and, by−→
P ∈ Wn and x ∈ C(X), xPi0z. Hence xj ∈ C(Xj) and xj+1 ∈ Xj\C(Xj) ⇒ xjPijxj+1

for some ij ∈ N. Hence x1Pi1x2. Now, consider Pi1 and x3. Since x3 /∈ C(X2), x3P i1x2

and since Pi1 ∈ W, x1Pi1x3 and similarly x1Pi1x4, ..., x1Pi1xm−1 and x1Pi1xm the last
of which contradicts xm ∈ C(Xm) and x1 ∈ Xm\C(Xm). �

2) Strongest k-majority q-Pareto rule

Theorem 37 (i) Fss ∈ Λ(NE) ⇔ |A| < (q + 1)ν(I) where ν(I) is the Nakamura
number16 associated to family I (Aleskerov, 1996)17 and Fss ∈ Λ(NE) ⇔ Fss ∈ Λ(FP )
by Theorem ??;

(ii) Fss satisfies Weak non-resoluteness condition if and only if k = 1 and q = 0;
(iii) Fss satisfies Weak Axiom of Revealed Preferences if and only if k = 1 and

q = 0.

Proof : (k = 1 and q = 0 ⇒ Fss ∈ Λ(WNR)) Since when k = n and q = 0
Fs ∈ Λ(WNR), by Theorem ?? when k = 1 and q = 0 Fss ∈ Λ(WNR).

(k = 1 and q > 0 ⇒ Fss /∈ Λ(WNR)) Consider the following example.

1 n − 1
x y

A\{x} A\{y}
Since ∀i ∈ N ∀a ∈ A |A ∩ Di(a)| ≤ 1 ≤ q, C(A) = A.

16This number shows the smallest number of sets in I with empty intersection. Whenever
⋂

I∈I
I �= ∅

then by definition ν(I) = ∞.
In the referred paper the problem of Non-emptiness is investigated in a more general context.
17In the referred paper the problem of Non-emptiness is investigated in a more general context.
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((1 < k ≤ n and |A| ≥ 3 ⇒ Fss /∈ Λ(WNR)) For the case of 1 < k < n−1, consider
the following example.

k − 1 k − 1 k − 1
x y z

X\{x} X\{y} X\{z}
· · ·

In this example, C(A) = A. For the case of k = n − 1, consider the following
example.

1 n − 2 1
x y z

X\{x} X\{y} X\{z}
· · ·

In this example, C(A) = A.
Since when k = n by Theorem ?? Cs(A) ⊆ Css(A) and for k = n Fs /∈ Λ(WNR),

Fss(A) /∈ Λ(WNR).
((k = 1 and q = 0 ⇒ Fss ∈ Λ(WARP )) Since when k = n and q = 0 Fs ∈

Λ(WARP ), by Theorem ?? when k = 1 and q = 0 Fss ∈ Λ(WARP ).
(([k = 1 and q > 0] and |A| ≥ 2q + 2) ⇒ Fss /∈ Λ(WARP )) Consider the following

example where X1 = {x, y} ∪ X1,q and X2 = {x, y} ∪ X.

1 1 1
x y y

Xq+1,2q X1,q x
y x X1,q

· · ·
In this example, y ∈ C(X1) and x /∈ C(X1) but y /∈ C(X2) and x ∈ C(X2).
((1 < k < n − 1 and |A| ≥ 2q + 3) ⇒ Fss /∈ Λ(WARP )) Consider the following

example where X1 = {x, y} ∪ X1,q and X2 = {x, y} ∪ Xq+1,2q+1.

k − 1 k − 1 k − 1
x y Xq+1,2q+1

X1,q Xq+1,2q+1 x
y x X1,q

· · y
· ·

In this example, x ∈ C(X1) and y /∈ C(X1) but y ∈ C(X2) and x /∈ C(X2).
(([k = n − 1 and q > 0] and |A| ≥ 2q + 3) ⇒ Fss /∈ Λ(WARP )) Consider the

following example where X1 = {x, y} ∪ X1,q+1 and X2 = {x, y} ∪ Xq+2,2q+2.

1 n − 2 1
x X1,q+1 y

X1,q+1 y Xq+1,2q+1

y Xq+2,2q+2 x
· x ·
· · ·
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In this example, x ∈ C(X1) and y /∈ C(X1) but y ∈ C(X2) and x /∈ C(X2).
(([k = n − 1 and q = 0] and |A| ≥ 4) ⇒ Fss /∈ Λ(WARP )) Consider the following

example where X1 = {x, y, z} and X2 = {x, y, w}.
1 n − 2 1
x w z
w y x, y
y z ·
· x ·
· · ·

In this example, x /∈ C(X1) and y ∈ C(X1) but y /∈ C(X2) and x ∈ C(X2).
((k = n and |A| ≥ 2q + 4) ⇒ Fss /∈ Λ(WARP )) Consider the following example

where X1 = {x, y} ∪ X1,q+1 and X2 = {x, y} ∪ Xq+2,2q+2.

1 n − 1
Xq+2,2q+2 X1,q+1

x y
X1,q+1 Xq+2,2q+2

y x
· ·

In this example, x ∈ C(X1) and y /∈ C(X1) but y ∈ C(X2) and x /∈ C(X2). �

3) Weak k-majority q-Pareto rule

Theorem 38 (i) Fw satisfies Non-emptiness hence Fixed point condition;
(ii) Fw does not satisfy Weak non-resoluteness condition and Weak Axiom of Re-

vealed Preferences.

(Fw ∈ Λ(NE)) Since when k = 1 Fs ∈ Λ(NE), by Theorem ?? Fw ∈ Λ(NE).

For the case of 1 < k < n consider any Pi0 ∈ −→
P ∈ Wn. Then ∃i0 ∈ N such

that |X ∩ Di0(x)| = 0 for some x ∈ X hence ∃I ∈ I such that i0 ∈ I and therefore∣∣∣∣⋂
i∈I

X ∩ Di(x)

∣∣∣∣ = 0. Thus x ∈ C(X) �= ∅. Hence Fw ∈ Λ(NE).

When k = n, Fw = Fss by Theorem ??. Then Fss ∈ Λ(NE) ⇔ |A| < (q + 1)ν(I)
where I = {N}. But ν(I) = ∞ since

⋂
I∈I

I = N �= ∅. Then since |A| < ∞ always holds,

when k = n, Fss = Fw ∈ Λ(NE).
Since Fw ∈ Λ(NE) by Theorem ??, Fw ∈ Λ(FP ).
(Fw /∈ Λ(WNR)) Since when k = 1 Fs /∈ Λ(WNR), by Theorem ?? Fw /∈ Λ(WNR).
For the case of 1 < k < n, consider the following example.

1 n − 1
x A\{x}

A\{x} x
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Since ∀x ∈ A ∃i ∈ N such that |A ∩ Di(x)| = 0 and Fw ∈ Λ(ND+) by Theorem
?? C(A) = A.

Since when k = n Fss /∈ Λ(WNR), by Theorem ?? Fw /∈ Λ(WNR).
(k = 1 ⇒ Fw /∈ Λ(WARP )) When k = 1, since Fs /∈ Λ(WARP ), Fw /∈ Λ(WARP )

and when k = n, since Fss /∈ Λ(WARP ), Fw /∈ Λ(WARP ) by Theorem ??.
((1 < k < n and |A| ≥ 2q+4) ⇒ Fw /∈ Λ(WARP )) Consider the following example

where X1 = {x, z}∪X1,q+1 and X2 = {x, z}∪Xq+2,2q+2. Let n− k + 1 = 2(k− 1) ≥ k.

k − 1 n − k + 1
Xq+2,2q+2 X1,q+1y

x z
X1,q+1 Xq+2,2q+2

z x
· ·

In this example, x ∈ C(X1) and z /∈ C(X1) but z ∈ C(X2) and x /∈ C(X2). �

5.1.3 Normative conditions on Positional SCCs

Theorem 39 (Young, 1975) (i) All scoring voting correspondences (choosing the sub-
set of candidates with highest total score) satisfy Reinforcement axiom. (ii) There is
no Condorcet consistent18 voting correspondence satisfying Reinforcement axiom.

Theorem 40 (Moulin, 1986) (i) All scoring voting rules satisfy Participation axiom.
(ii) If |A| ≥ 4 then there is no Condorcet consistent rule satisfying Participation axiom.

4) Plurality

Theorem 41 Plurality satisfies Unanimity, Negative non-dominance, No veto power1
(hence F ∈ ΛNV P2 by Theorem ??) conditions and, Reinforcement and Participation
Axioms, it does not satisfy Locality (hence Monotonicity and Neutrality2) and Positive
non-dominance conditions.

Proof : (F ∈ ΛU) Take any x ∈ X ∈ A. Let ∀i ∈ N Di(x) ∩ X = ∅. Then

∀i ∈ N �∃y ∈ X such that yPix, then ∀y ∈ X n+(x,
−→
P ) = n ≥ n+(y,

−→
P ), then

x ∈ C(X). Since F ∈ ΛU , then F ∈ ΛNI+
by Theorem ??.

(F /∈ ΛND+
) Consider the following example.

1 2 3
x, y y y
· · ·

In this example, ∃i = 1 ∈ N such that X ∩ Di(x) = ∅ but x /∈ C(X) = {y}.
18A Condorcet consistent rule is a rule which chooses the Condorcet Winner (CW) when it exists.

A Condorcet Winner is an alternative that is preferred by a majority (not necessarily consisting the
same voters) to every other alternative.
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(F ∈ ΛND−
) Take any x ∈ X ∈ A. Let ∀i ∈ N X ∩ Di(x) �= ∅. Then ∀i ∈

N ∃yi ∈ X such that yiPix, then ∃yi ∈ X n+(x,
−→
P /X) = 0 < n+(yi,

−→
P /X), then

x /∈ C(X). Since F ∈ ΛND−
, then F ∈ ΛNI− by Theorem ??.

Remark 18: If F does not satisfy Locality, than it does not satisfy Monotonicity
and Neutrality2. The example given for the Borda procedure (the next rule that is
analyzed) in the case of Locality will also work for Plurality. For illustrative purposes
I provided separate example for Monotonicity and Neutrality2 below.

(F /∈ ΛM) Consider the following example.

−→
P /X

1 2 3 4 5
x y x z w

y, z z · · z
w w · · x

x · x y

−→
P ′/X

1 2 3 4 5
x z x z z
· x · x w
· · · · x
· · · · y

In this example, n+(x,
−→
P /X) = 2 > n+(y,

−→
P /X) = n+(z,

−→
P /X) =

n+(w,
−→
P /X) = 1 and therefore x ∈ C(X). But, although ∀i ∈ N X ∩ D′

i(x) ⊆
X ∩ Di(x), x /∈ C ′(X) = {z}.

(F /∈ ΛNe2) Consider the following example.

−→
P /X

1 2 3
x x z

y, z y, z x, y

−→
P ′/X

1 2 3
y, z y, z z

y

In this example, C(A) = {x}. Take X = {x, y, z} and X ′ = {y, z}. Although
∀i ∈ N X ∩ Di(x) = X ′ ∩ Di(y), y /∈ C(X ′) = {z}.

(F ∈ ΛNV P1) Let ∀i ∈ N\{j} xPiy and yPjx. Then since
−→
P ∈ Wn and n ≥ 3,

n+(x,
−→
P /X) > n+(y,

−→
P /X) hence y /∈ C(X). Since F ∈ ΛNV P1 , F ∈ ΛNV P2 by

Theorem ??.
(F ∈ ΛRA) Since Plurality rule is a scoring rule, then F ∈ ΛRA by Theorem ??.
(F ∈ ΛPA) Since Plurality rule is a scoring rule F ∈ ΛPA by Theorem ??. �
5) Inverse Plurality

Theorem 42 F ∈ Λ(U)∩Λ(ND−)∩Λ(M)∩Λ(Ne) ∩ Λ(An)∩ Λ(NVP)
∩Λ(RA) ∩ Λ(PA)

Proof : (F ∈ Λ(U)) Take any x ∈ X ∈ A. Let ∀i ∈ N Di(x) ∩ X = ∅. Suppose
x /∈ C(X). Since F ∈ Λ(NE) (for proof of this fact consult next section), ∃y ∈ X

such that y ∈ C(X). Then n−(y,
−→
P ) < n−(x,

−→
P ) hence ∃i0 ∈ N such that yPi0x which

contradicts the assumption. So x ∈ C(X). Since F ∈ Λ(U), then F ∈ Λ(NI+) by
Theorem ??.
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(F /∈ Λ(NV P2)) Consider the following example where A = {x, y} and
−→
P is a

weak order which is not a linear order19.

−→
P

1 2 3
x, y x, y y

x

In this example, ∀i ∈ N\{3} Di(x) ∩ A = ∅ but x /∈ C(A) = {y}. Since F /∈
Λ(NV P2), then F /∈ Λ(NV P1) by Theorem ??. Also, that F /∈ Λ(ND+) can be
shown via this example.

(F /∈ Λ(ND−)) Consider the following example.

−→
P

1 2 3
x y z
w w w

y, z z, x x, y

In this example, n−(w,
−→
P ) = 0 < n−(x,

−→
P ) = n−(y,

−→
P ) = n−(z,

−→
P ) = 2 hence

C(A) = {w} where ∀i ∈ N Di(w) ∩ X �= ∅.
(F ∈ Λ(NI−)). Consider the following example which can be applied to any

{x, y} ⊆ X ∈ A where x �= y with n ≥ 2.

−→
P

1 2 · · n
X X X X X\{x}

x

In this example, ∀y ∈ X\{x} n−(y,
−→
P ) = n − 1 < n−(x,

−→
P ) = n implying

x /∈ C(X).
(F /∈ Λ(M)) Consider the following example.

−→
P

1 2 3
x x y
y y x

−→
P ′

1 2 3
x, y x, y y

x

19For the case of linear orders, although all the indifference classes consist of singletons including
indifference class of alternatives getting ’top vote’, F /∈ Λ(NV P2). Consider the following example
where ∀i ∈ N\{3} Di(x) ∩ X = ∅ but x /∈ C(X) = {z}.−→

P
1 2 3
x x y
z z z
y y x
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In this example, although ∀i ∈ N D′
i(x) ∩ X ⊆ Di(x) ∩ X and x ∈ C({x, y}),

x /∈ C ′({x, y}) = {y}.
(F /∈ Λ(Ne)) Consider the following example where A = {x, y, z}.

−→
P

1 2 3
x x z

y, z y, z x, y

−→
P

1 2 3
y, z y, z z

y

In this example, C(A) = {x}. Take X = {x, y, z} = A and X ′ = {y, z}. Although
∀i ∈ N Di(x) ∩ X = Di(y) ∩ X ′, y /∈ C(X ′) = {z} violating neutrality.

(F ∈ Λ(An)) Let a bijection η : N → N be given. Then n−(x,
−→
P ) = n−

η (x,
−→
P ′)

where
−→
P ′ = {Pη(i)}. So x ∈ C(X) ⇔ x ∈ Cη(X).

(F ∈ Λ(RA)) Since Invese Plurality rule is a scoring rule (Moulin, 1988), then
F ∈ Λ(RA) by Theorem ??.

(F ∈ Λ(PA)) Since Inverse Plurality rule is a scoring rule (Moulin, 1988), then for
|A| ≥ 4, F ∈ Λ(PA) by Theorem ??.

6) Borda

Theorem 43 Borda rule satisfies Unanimity condition and Reinforcement and Par-
ticipation Axioms, it does not satisfy Locality (hence Monotonicity and Neutrality2),
Positive and Negative non-dominance and No veto power2 (hence F /∈ ΛNV P1 by The-
orem ??) conditions.

Proof : (F ∈ ΛU) Take any x ∈ X ∈ A. Let ∀i ∈ N Di(x) ∩ X = ∅. Then
∀i ∈ N ∀y ∈ A ∀X ∈ A Li(x) ∩ X ⊇ Li(y) ∩ X and hence ∀i ∈ N ∀y ∈
A ∀X ∈ A Bi(x) ≥ Bi(y) and therefore B(x) ≥ B(y). Hence x ∈ C(X).

(F /∈ ΛL) Consider the following example.

−→
P /X

1 2 3
x x y
y y x
· · ·

−→
P ′/X

1 2 3
x, y x, y y
· · x
· · ·

In this example, although ∀i ∈ N D′
i(x) ∩ X = Di(x) ∩ X and {x} = C(X),

x /∈ C ′(X) = {y} hence F does not satisfy locality and hence F /∈ ΛNe2 . and F /∈ ΛM .
(F /∈ ΛND+

) Consider the example below. There X ∩ D1(x) = ∅ but x /∈ C(X).
(F /∈ ΛND−

) Consider the following example.

1 1 1
x y z
w w w

y, z z, x x, y
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In this example, B(w) = 6 > B(x) = B(y) = B(z) = 3 hence C(A) = {w} although
∀i ∈ N Di(w) ∩ X �= ∅.

(|A| > |N | ⇒ F /∈ ΛNV P2) Consider the following example.

n − 1 1
X\{y} y

y X\{y}

In this example, ∀a ∈ A\{y} B(a) = |N | − 1 and B(y) = |A| − 1. Hence if
|A| > |N | then C(X) = {y}. Then if |A| > |N | then F /∈ ΛNV P1 by Theorem ??.

(F ∈ ΛRA) Since Borda rule is a scoring rule, then F ∈ ΛRA by Theorem ??.
(F ∈ ΛPA) Since Borda rule is a scoring rule F ∈ ΛPA by Theorem ??. �
7) Inverse Borda

Theorem 44 Inverse Borda rule satisfies Unanimity. It does not satisfy Locality, Pos-
itive and Negative non-dominance and No veto power2 conditions and Reinforcement
and Participation Axioms.

Proof : (F ∈ ΛU) Take any x ∈ X ∈ A. Let ∀i ∈ N Di(x) ∩ X = ∅. Then
∀i ∈ N Li(x)∩X ⊇ Li(y)∩X and hence ∀i ∈ N Bi(x) ≥ Bi(y) for any y ∈ X and
therefore B(x) ≥ B(y). So x can not be eliminated from X. Assume that z ∈ X is
eliminated from X and the resulting set is X ′ ⊂ X. Since ∀i ∈ N Di(x) ∩X ′ = ∅ for
any X ′ ⊆ X, x will not be eliminated from any X ′. Hence x ∈ C(X). Since F ∈ ΛU ,
then F ∈ ΛNI+

by Theorem ??.
(F /∈ ΛM) Consider the following example.

−→
P

1 2 3
x w x
y x w, y, z
z y, z
w

−→
P ′

1 2 3
x,w w x, y, z, w
y x, y, z
z

In this example, although ∀i ∈ N D′
i(x) ∩ X = Di(x) ∩ X and x ∈ C(X) = {x},

x /∈ C ′(X) = {w}. Hence F is not local. Then F /∈ ΛM and F /∈ ΛNe2 by Theorem ??.
(F ∈ ΛNe1) Let σ : A → A be a bijection and ∀i ∈ N ∀x ∈ A σ(Li(x)) =

Li(σ(x)) and σ(Di(x)) = Di(σ(x)). Let σ(Pi) = {(σ(x), σ(y)) ∈ A×A : (x, y) ∈ A×A}
and σ(

−→
P ) be the corresponding profile. Then ∀X ∈ A B(x,

−→
P /X) ≤ B(y,

−→
P /X)

⇔ B(σ(x), σ(
−→
P )/σ(X)) ≤ B(σ(y), σ(

−→
P )/σ(X)) hence x ∈ C(X) ⇔ σ(x) ∈ C ′(σ(X))

where C ′(σ(X)) = F (σ(X), σ(
−→
P )/σ(X)).

(F ∈ ΛAn) Let η : N → N be a bijection. Take any X ∈ A and any
−→
P ∈ W.

Consider the contraction
−→
P /X. Then ∀X ∈ A B(x,

−→
P /X) = B(x,

−→
P ′/X) where−→

P ′/X = {Pη(i)/X}η(i)∈N . So ∀X ∈ A x ∈ C(X) ⇔ x ∈ C ′(X).

(F /∈ ΛND+
) Consider the example below. There x /∈ C(A) although X∩D1(x) = ∅.
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(F /∈ ΛND−
) Consider the following example.

1 2 3 4 5
x z w x w
y y y y y

z, w w, x z w, z x, z
x

In this example, C(A) = {y} where ∀i ∈ N Di(y) ∩ X �= ∅.
(|X| > |N | ⇒ F /∈ ΛNV P2) Consider the following example where |X| > |N |.

n − 1 1
X\{y} y

y X\{y}

In this example, ∀a ∈ X\{y} B(a) = |N | − 1 and B(y) = |X| − 1. Hence if
|X| > |N | then C(X) = {y}. Then if |X| > |N | then F /∈ ΛNV P1 by Theorem ??.

(F /∈ ΛRA and F /∈ ΛPA) First following lemmas are introduced.

Lemma 1 ∀−→P ∈ W ∀X ∈ A if a ∈ A is a Condorcet Winner (CW) on
−→
P /X then

B(a,
−→
P /X) ≥ �n/2� (m − 1) where m = |X| .

Proof : Let a be a CW on
−→
P /X. Then each b ∈ X\{a} exists at least �n/2�

times in lower contour sets of a, i.e., ∀b ∈ X\{a}
∣∣∣V (a, b;

−→
P /X)

∣∣∣ ≥ �n/2� . Hence

B(a,
−→
P /X) ≥ �n/2� (m − 1) where m = |X| . �

Lemma 2 Inverse Borda rule is Condorcet consistent.

Proof : Suppose a ∈ A is a CW on
−→
P /A and it is eliminated from some X ∈

A. Then ∀x ∈ X\{a} B(x,
−→
P /X) ≥ B(a,

−→
P /X) and ∃x0 ∈ X\{a} such that

B(x0,
−→
P /X) > B(a,

−→
P /X). Then sum of the Borda Scores for

−→
P /X is strictly greater

than |X| times B(a), i.e.,
∑
y∈X

B(y) > mB(a) where m = |X| . But this is infeasible

because it exceeds the total of Borda Scores for a linear order on X in which case this
total is the greatest, i.e.,

∑
y∈X

B(y) > mB(a) ≥ m(m − 1) �n/2� ≥ m(m − 1)(n/2) by

Lemma ?? and definition of �·�, but
∑
y∈X

B(y) > m(m−1)(n/2) = max−→
P ∈W

∑
z∈X

B(z,
−→
P /X).

So a is never eliminated, that is a is always chosen by Inverse Borda rule. �
(F /∈ ΛRA) Since Inverse Borda rule is Condorcet Consistent by Lemma ??, then

F /∈ ΛRA by Theorem ??.
(F /∈ ΛPA) Since Inverse Borda rule is Condorcet Consistent by Lemma ??, then

whenever |A| ≥ 4, F /∈ ΛPA by Theorem ??. �
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5.1.4 Rationality Constraints for Positional SCCs

4) Plurality

Theorem 45 Plurality satisfies Non-emptiness condition but it does not satisfy Weak
non-resoluteness, Inverse and Direct Condorcet, Independence of Outcast, Dual her-
itage, Fixed point conditions and Weak axiom of revealed preferences.

Proof : (F ∈ Λ(NE)) Take any X ∈ A and
−→
P ∈ W and consider the contraction−→

P /X. Then ∃x ∈ X such that n+(x,
−→
P /X) ≥ 0. Now, consider the set of scores of

all such alternatives N+ = {n+(x,
−→
P /X) ∈ Z+ : x ∈ X} where Z+ is the set of all

nonnegative integers. Since maximum of N+ exists, the social decision is never empty,
i.e.,

arg max
n+(x,

−→
P /X)∈N+

n+(x,
−→
P /X) ∈ C(X) �= ∅.

(F /∈ Λ(WNR)) Consider the following example where A = {x, y, z}.
1 1 1

x, y y, z x, z
z x y

In this example, C(A) = A �⊂ A hence F /∈ Λ(WNR).
(F /∈ Λ(Con−)) Consider the following example.

3 2 2
x y z
y z, x y
z x

In this example, x ∈ C(A) but x /∈ C({x, y}). Since F /∈ Λ(Con−), then F /∈ Λ(H)
and F /∈ Λ(ACA), since F /∈ Λ(H), F /∈ Λ(ACA∗), and F /∈ Λ(PI) by Theorem ??.

(F /∈ Λ(Con+)) Consider the previous example. In this example, y ∈ C({x, y}) ∩
C({y, z}) but y /∈ C(A). Since F /∈ Λ(Con+), then F /∈ Λ(C) by Theorem ??.

(F /∈ Λ(O)) Consider the previous example. In this example, C(A) = {x} ⊂
{x, y} ⊂ A but C(A) = {x} �= {y} = C({x, y}).

(F /∈ Λ(H−)) Consider the previous example. In this example, {x, y} ⊂ A but
C({x, y}) = {y} �⊆ {x} = C(A).

(F /∈ Λ(FP )) Consider the previous example. Take X ′ = {a, b} and X = A. Since
C(A) = {x}, �∃a ∈ {x, y} ⊂ A such that a ∈ C({x, y}) = {y}.

(F /∈ Λ(WARP )) Consider the previous example. Since C(A) = {x}, xGy and
xGz holds.But since C({x, y}) = {y}, yGx also holds. �

5) Inverse Plurality

Theorem 46 Inverse Plurality satisfies Non-emptiness but it does not satisfy Weak
non-resoluteness, Inverse and Direct Condorcet Principles, Independence of Outcast,
Dual heritage, Fixed point conditions and Weak axiom of revealed preferences.
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Proof : (F ∈ Λ(NE)) Take any X ∈ A and
−→
P ∈ W. Consider the contraction−→

P /X . ∃x ∈ X such that n−(x,
−→
P /X) > 0. Now, consider the set of scores of all

such alternatives N− = {n−(x,
−→
P /X) ∈ Z+ : x ∈ X} where Z+ is the set of all

nonnegative integers. Since maximum of N− exists, the social decision is never empty,

i.e., arg max
n−(x,

−→
P /X)∈N−

n−(x,
−→
P /X) ∈ C(X) �= ∅.

(F /∈ Λ(WNR)) Consider the following example where A = {x, y, z}.
−→
P

1 2 3
y, z x, z x, y
x y z

In this example, ∀a ∈ A n−(a,
−→
P ) = 1, hence C(A) = A �⊂ A violating weak

non-resoluteness .
(F /∈ Λ(Con−)) Consider the following example where A = {x, y, z} and N =

{1, 2, ..., 7}. −→
P

3 2 2
y, z x x
x z y

y z

In this example, y ∈ C(A) = {y, z} but y /∈ C({x, y}) violating Con−. Since
F /∈ Λ(Con−), then F /∈ Λ(H) and F /∈ Λ(ACA) by Theorems ?? and ??. Since
F /∈ Λ(H), then F /∈ Λ(ACA∗) by Theorem ?? and F /∈ Λ(PI) by Theorem ??.

(F /∈ Λ(Con+)) Consider the previous example. In this example, x ∈ C({x, y}) ∩
C({x, z}) but x /∈ C(A) violating Con+. Since F /∈ Λ(Con+), then F /∈ Λ(C) by
Theorem ??.

(F /∈ Λ(O)) Consider the following example.
−→
P

3 2 2
x z, w w
y x z

z, w y y
x

In this example, {x, y} = C(A) ⊆ {x, y} ⊂ A but C(A) = {x, y} �= {x} =
C({x, y}).

(F /∈ Λ(H−)) Consider the following example.
−→
P

3 2 2
y, z x x
x z y

y z
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In this example, {x, y} ⊂ A but C({x, y}) = {x} �⊂ {y, z} = C(A).
(F /∈ Λ(FP )) Consider the previous example. In this example, �∃a ∈ A such that

a ∈ X ⊆ A ⇒ a ∈ C(X) since {y, z} = C(A) but y /∈ C({x, y}) and z /∈ C({x, z}).
(F /∈ Λ(WARP )) Consider the previous example. In this example, C(A) =

{y, z} ⇒ yGx and zGx. However, C({x, y}) = {x} ⇒ xGy violating acyclicity of
G.

6) Borda

Theorem 47 Borda satisfies Non-emptiness condition but it does not satisfy Weak
non-resoluteness, Inverse and Direct Condorcet, Independence of Outcast, Dual her-
itage, Fixed point conditions and Weak axiom of revealed preferences.

Proof : (F ∈ Λ(NE)) Take any X ∈ A and
−→
P ∈ W and consider the contraction−→

P /X. Then ∃x ∈ X such that B(x,
−→
P /X) ≥ 0. Now, consider the set of scores of

all such alternatives B = {B(x,
−→
P /X) ∈ Z+ : x ∈ X} where Z+ is the set of all

nonnegative integers. Since maximum of B exists, the social decision is never empty,

i.e., arg max
B(x,

−→
P /X)∈B

B(x,
−→
P /X) ∈ C(X) �= ∅.

(F /∈ Λ(WNR)) Consider the following example where A = {x, y, z, w}.
1 1 1 1
x w w, z y
y z x, y x

z, w y, x z
w

In this example, C(A) = A �⊂ A since B(x) = B(y) = B(z) = B(w) = 5.
(F /∈ Λ(Con−)) Consider the following example.

1 1 1
x x y
y y z, w

z, w z, w x

In this example, C(A) = {y} but y /∈ C({x, y}) violating Con−. Since F /∈
Λ(Con−), then F /∈ Λ(H) and F /∈ Λ(ACA), since F /∈ Λ(H), F /∈ Λ(ACA∗) and
F /∈ Λ(PI) by Theorem ??.

(F /∈ Λ(Con+)) Consider the previous example. In this example, x ∈ C({x, y}) ∩
C({x, z})∩C({x,w}) but x /∈ C(A). Since F /∈ Λ(Con+), then F /∈ Λ(C) by Theorem
??.

(F /∈ Λ(O)) Consider the previous example. In this example, C(A) = {y} ⊂
{x, y} ⊂ A but C(A) = {y} �= {x} = C({x, y}).

(F /∈ Λ(H−)) Consider the previous example. In this example, {x, y} ⊂ A but
C({x, y}) = {x} �⊂ {y} = C(A).
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(F /∈ Λ(FP )) Consider the previous example. In this example, �∃a ∈ A such that
a ∈ X ⊆ A ⇒ a ∈ C(X) since {y} = C(A) but y /∈ C({x, y}) where X = {x, y}.

(F /∈ Λ(WARP )) Consider the previous example. In this example, C(A) = {y} ⇒
yGx, yGz and yGw. However, C({x, y}) = {x} ⇒ xGy. �

7) Inverse Borda

Theorem 48 Inverse Borda satisfies Non-emptiness and Direct Condorcet Principle
but it does not satisfy Weak non-resoluteness, Inverse Condorcet, Independence of Out-
cast, Concordance, Dual heritage, Fixed point conditions and Weak axiom of revealed
preferences.

Proof : (F ∈ Λ(NE)) Take any X ∈ A and
−→
P ∈ W. Consider the contraction−→

P /X . Since Borda Rule is never empty, there will always be some alternative which
is not eliminated from any X ′ ⊆ X.

(F /∈ Λ(WNR)) Consider the following example where A = {x, y, z, w}.
1 1 1
x y z

y, z x, z x, y

In this example, C(A) = A �⊂ A since B(x) = B(y) = B(z) = 2.
(F /∈ Λ(Con−)) Consider the following example.

1 1 1
x, y w z
z x w
w y x

z y

In this example, z ∈ C(A) = {x, z, w} but z /∈ C({y, z}). Since F /∈ Λ(Con−),
then F /∈ Λ(H) and F /∈ Λ(ACA) by Theorems ?? and ??. Since F /∈ Λ(H), then
F /∈ Λ(ACA∗) by Theorem ?? and F /∈ Λ(PI) by Theorem ??.

(F ∈ Λ(Con+)) Take any x ∈ X ∈ A. Let x ∈ C({x, y}) for each y ∈ X.

Then ∀y ∈ X B(x,
−→
P /{x, y}) ≥ B(y,

−→
P /{x, y}). Then∀y ∈ X |{i ∈ N : xPiy}| ≥

|{i ∈ N : yPix}| . Suppose ∀i ∈ N ∀y ∈ X xP iy and yP ix. Then ∀i ∈ N ∀y, z ∈
X yP iz and zP iy since ∀Pi ∈ −→

P Pi ∈ W which further implies x ∈ C(X) = X.
Then ∃y ∈ X |{i ∈ N : xPiy}| > |{i ∈ N : yPix}| and ∀y ∈ X |{i ∈ N : xPiy}| ≥
|{i ∈ N : yPix}| .

Consider the case of linear orders. Then ∀X ∈ A B(x,
−→
P /X) ≥ (|X| − 1) �n/2� .

Suppose ∀y ∈ X\{x, z} B(y,
−→
P /X) ≥ B(z,

−→
P /X) > B(x,

−→
P /X) so that x is elim-

inated. This implies total of score to be greater than |X| times score of x, i.e.,∑
y∈X

B(y,
−→
P /X) > (|X|)(|X| − 1) �n/2� ≥ (|X|)(|X| − 1)(n/2). But we know that

for linear orders total of scores must equal to (|X|)(|X| − 1)(n/2) which leads to the

following contradicition.
∑
y∈X

B(y,
−→
P /X) > (|X|)(|X| − 1)(n/2) =

∑
a∈X

B(a,
−→
P /X).
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(F /∈ Λ(C)) Consider the following example.20

−→
P

1 2 3 4 5 6
x y w x y z
w x z z x w
z z y w w y
y w x y z x

From {x, y, z, w} only x is selected. But C(x, y, w) = {x, y, w} and C(x, y, z) =
{x, y, z}, violatingConcordance.

(F /∈ Λ(O)) Consider the following example.

−→
P

1 2 3 4 5 6
x y y y x z, w
y z z z, w w, z x

z, w x x x y y
w w

In this example, C(A) = {y} ⊂ {x, y} ⊂ A but C(A) = {y} �= {x, y} = C({x, y}).
(F /∈ Λ(H−)) Consider the example below. In this example, {y, z} ⊂ A but

C({y, z}) = {y} �⊂ {x} = C(A).
(F /∈ Λ(FP )) Consider the following example.

1 1 1
x, y w z
z x w
w y x

z y

In this example, �∃a ∈ A such that a ∈ X ⊆ A ⇒ a ∈ C(X) since C(A) = {x, z, w}
but C({x, y}) = {y}.

(F /∈ Λ(WARP )) Consider the previous example. In this example, C(A) =
{x, z, w} hence zGy. However, C({y, z}) = {y} hence yGz. �

5.2 Comparative Analysis of FVRs

5.2.1 Normative conditions on FVRs

8) Approval Voting

Theorem 49 Approval Voting satisfies Positive and Negative Pareto conditions and
Reinforcement Axiom. It does not satisfy Locality condition. It satisfies No veto power
condition.

20I thank Borghan N. Narajabad for providing this example.
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Proof : (F ∈ ΛU+
) Take any x ∈ X ∈ A. Let profile {Ci(·)} be such that

∀i ∈ N x ∈ Ci(X). Since |V (x,X; {Ci(·)})| = n ≥ |V (y,X; {Ci(·)})| for any y ∈ X,
x ∈ C(X).

(F ∈ ΛU−
) Let x, y ∈ X where x �= y. Let |V (x,X; {Ci(·)})| = 0 and

|V (y,X; {Ci(·)})| �= 0. Then x /∈ C(X). Now, let X = {x}. Let |V (x,X; {Ci(·)})| = 0.
Then x /∈ C(X) satisfying U−.

(F /∈ ΛM) Let the following two profiles {Ci(·)} and {C̃i(·)} and A = {x, y, z} be
given.

X C1(A) C2(A) C3(A) C(A)

A {x} {y} {z} {x, y, z}

X C̃1(A) C̃2(A) C̃3(A) C̃(A)

A {x, y} {y} {y} {y}
Since ∀a, b ∈ A |V (a,A; {Ci(·)})| = |V (b, A; {Ci(·)})| = 1, A = C(A). One can

check that V (x,A; {Ci(·)}) = V (x,A; {C̃i(·)}) holds. But
∣∣∣V (x,A; {C̃i(·)})

∣∣∣ = 1 <∣∣∣V (y,A; {C̃i(·)})
∣∣∣ = 3 and x /∈ C̃(A) violating locality L. Since F is not local F /∈ ΛM

and F /∈ ΛNe2 by Theorem ??.
(F ∈ ΛNV P ) Take any x ∈ X ∈ A. Let profile {Ci(·)} be such that ∀i ∈

N |Ci(·)| = 1 and |V (x,X; {Ci(·)})| = n − 1 and ∃y ∈ X\{x} such that
|V (y,X; {Ci(·)})| = 1. Then, since
n ≥ 3, |V (x,X; {Ci(·)})| = n − 1 ≥ 2 > |V (y,X; {Ci(·)})| = 1, hence y /∈ C(X).

(F ∈ ΛRA) Let N be partitioned into two sets ω1 and ω2, i.e. N = ω1 ∪ ω2 and
ω1 ∩ ω2 = ∅. Let x ∈ Cω1(A) ∩ Cω2(A) �= ∅. Then since ∀y ∈ A |Vω1(x,A; {Ci(·)})| ≥
|Vω1(y,A; {Ci(·)})| and |Vω2(x,A; {Ci(·)})| ≥ |Vω2(y,A; {Ci(·)})| I have
|VN(x,A; {Ci(·)})| ≥ |VN(y,A; {Ci(·)})|. Therefore, x ∈ CN(A).

Let x ∈ CN(A). Let x /∈ Cω1(A) ∩ Cω2(A) �= ∅. Let z ∈ Cω1(A) ∩ Cω2(A). Then,
|Vω1(z, A; {Ci(·)})| ≥ |Vω1(x,A; {Ci(·)})| and
|Vω2(z, A; {Ci(·)})| ≥ |Vω2(x,A; {Ci(·)})|with at least one strict inequality, implying
that x /∈ CN(A) which is a contradiction. Hence x ∈ Cω1(A) ∩ Cω2(A). �

9) k−Majority rule

Theorem 50 (Aizerman and Aleskerov, 1986) The Symmetrically Central Class in
ΛFV R coincides with the class of k-majority rules21.

Theorem 51 (i) k-majority rule satisifes Positive and Negative Pareto conditions;
(ii) k-majority satisfies No Veto Power if and only if 1 < k ≤ n;
(iii) k-majority satisfies Reinforcement Axiom if and only if k = n.

Proof : (F ∈ ΛU+
) Take any x ∈ X ∈ A and any 1 ≤ k ≤ n. Let profile {Ci(·)}be

such that ∀i ∈ N x ∈ Ci(X). Since |V (x,X; {Ci(·)})| = n ≥ k, x ∈ C(X).

21In the referred paper these rules are investigated in a more general context.
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(F ∈ ΛU−
) Take any x ∈ X ∈ A and any 1 ≤ k ≤ n. Let profile {Ci(·)} be such

that ∀i ∈ N x /∈ Ci(X). Since |V (x,X; {Ci(·)})| = 0 < k, x /∈ C(X).
(k = 1 ⇔ F /∈ ΛNV P ) Take any x ∈ X ∈ A . Let profile {Ci(·)} be such that

∀i ∈ N |Ci(·)| = 1 and |V (x,X; {Ci(·)})| = n − 1 and ∃y ∈ X\{x} such that
|V (y,X; {Ci(·)})| = 1. Since |V (y,X; {Ci(·)})| = 1 ≥ k = 1, y ∈ C(X) hence F /∈
ΛNV P . If 1 < k ≤ n then |V (y,X; {Ci(·)})| = 1 < k then y /∈ C(X) hence F ∈ ΛNV P .

(1 ≤ k < n ⇒ F /∈ ΛRA) First consider the following example where A = {x, y, z},
n = 5 and k = 2 which can be generalized to any k and where ω1 = {1, 2, 3, 4} and
ω2 = {5, 6, 7, 8}.

X 2 2 Cω1(·)
A {x} {y} {x, y}

X 2 2 Cω2(·)
A {y} {y} {y}

X 2 2 2 2 C(·)
A {x} {y} {y} {y} {x, y}

Now consider the generalized example.
Let A = {x, y, z} and ω1 = {1, 2, ..., k, ..., 2k}.

X k k Cω1(·)
A {x} {y} {x, y}

X k k Cω2(·)
A {y} {y} {y}

X k k k k C(·)
A {x} {y} {y} {y} {x, y}

In this example n is considered to be even but this restriction can be relaxed by just
adding one more individiual to ω1 or ω2 with an identical choice function according to
the coalition to which it is to be added. It can be seen that Cω1(A) = {x, y} = B1 and
Cω2(A) = {y} = B2. So B1 ∩ B2 = {y} �= ∅ but B1 ∩ B2 �= {x, y} = CN(A).

(k = n ⇒ F ∈ ΛRA) Let x ∈ Cω1(A) ∩ Cω2(A) �= ∅. Then ∀i ∈ N = ω1 ∪ ω2 x ∈
Ci(A). Hence x ∈ CN(A). Now, let x ∈ CN(A). Then ∀i ∈ N = ω1 ∪ ω2 x ∈ Ci(A).
Hence x ∈ Cω1(A) and x ∈ Cω2(A). Then x ∈ Cω1(A) ∩ Cω2(A).

�

10) Voting with Veto

Theorem 52 (Aleskerov, 1999) Voting wtih Veto procedure belongs to the Central
Class.

Theorem 53 Voting with Veto satisfies Positive and Negative Pareto, No veto power
conditions and Reinforcement Axiom. It does not satisfy Anonymity condition.

Proof : (F ∈ ΛU+
) Let ∀i ∈ N a ∈ Ci(A) then �∃i ∈ ω0 which is a vetoer and

|V (a,A; {Ci(·)})| = n ≥ �n/2� hence a ∈ C(A).
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(F ∈ ΛU−
) Let ∀i ∈ N a /∈ Ci(A) then ∃i ∈ ω0 such that Ci(A) = ∅. Then

a /∈ C(A) by definition of F.
(F /∈ ΛAn) Consider the following example where A = {x, y, z}. Let set of vetoers

ω0 = {1, 2} and N\ω0 = {3, 4, 5} and therefore �n/2� = 3.

X C1(·) C2(·) C3(·) C4(·) C5(·) C(A)

A {x} {x, y} {x} {y} {y} {x}
X Cμ(5)(·) Cμ(2)(·) Cμ(3)(·) Cμ(1)(·) Cμ(4)(·) Cμ(A)

A {y} {x, y} {x} {x} {y} {y}
Let μ : N → N be a bijection on N with the values given in the example. Observe

that C(A) �= Cμ(A).
(F ∈ ΛNV P ) Take any x ∈ X ∈ A . Let profile {Ci(·)} be such that ∀i ∈

N |Ci(·)| = 1 and |V (x,X; {Ci(·)})| = n − 1 and ∃y ∈ X\{x} such that
|V (y,X; {Ci(·)})| = 1. Let y ∈ Ci0(X). If i0 ∈ ω0 then y /∈ C(X) since |ω0| < �n/2�
and if i0 /∈ ω0 then again y /∈ C(X) since ∀i ∈ ω0 y /∈ Ci(X).

((|ω1| + |ω2
0|) > �n/2� ⇒ F /∈ ΛRA) For this proof it is additionally necessary to

partition N into two sets other than the partition of vetoers and others, that is ω0 and
N\ω0. For this purpose ω1 and ω2 will be used. Then, ω1

0 = ω1∩ω0 (resp. ω2
0 = ω2∩ω0

) will denote vetoers in ω1 (resp. in ω2) and ω1\ω1
0 (resp. ω2\ω2

0) ) will denote others
respectively.

First following Lemma is proved.

Lemma 3 �x� + �y� ≥ �x + y� where x, y ≥ 0.

Proof : Let x and y be nonnegative real numbers. Consider the fractional portions
of x and y, i.e., x = x1 + ε1 and y = y1 + ε2 where x1 and y1 are nonnegative integers
and 0 ≤ εi < 1, i ∈ {1, 2}. Then there are three cases. (1) Let ∀i ∈ {1, 2} εi �= 0.
Then �x� + �y� = �x1 + ε1� + �y1 + ε2� = x1 + y1 + 2 ≥ �x1 + y1 + ε1 + ε2� = �x + y�
since 0 ≤ ε1 + ε2 < 2. (2) Let ε2 = 0. Then �x�+�y� = �x1 + ε1�+�y1� = x1 +y1 +1 ≥
�x1 + y1 + ε1� = �x + y� since 0 ≤ ε1 < 1. (3) Similar proof for ε1 = 0. �

Now, F /∈ ΛRA is to be proved.

ω1

X ω1
0 �|ω1| /2� − |ω1

0| |ω1| − �|ω1| /2� C(·)
{x, y, z} {x, y} {x, y} {x} {x, y}

For subsociety ω1 above, ∀i ∈ ω1
0 x, y ∈ Ci(A) and |Vω1(x,A; {Ci(·)})| = |ω1| ≥

�|ω1| /2� and|Vω1(y,A; {Ci(·)})| = �|ω1| /2� ≥ �|ω1| /2� hence Cω1(A) = {x, y}.
ω2

X ω2
0 |ω2| − |ω2

0| C(·)
{x, y, z} {x, y} {y} {y}

For subsociety N2 above, ∀i ∈ ω2
0 x, y ∈ Ci(A) and |Vω2(x,A; {Ci(·)})| = |ω2

0| <
�|ω2| /2� and|Vω2(y,A; {Ci(·)})| = |ω2| ≥ �|ω2| /2� hence Cω2(A) = {y}.
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As one can see {y} = Cω1(A) ∩ Cω2(A) �= ∅. Now if join two subsocieties from
presentation A the choice functions are as follows:

N
ω0 �|ω1| /2� − |ω1

0| �|ω2| /2� − |ω2
0| |ω1| − �|ω1| /2� C(·)

{x, y} {x, y} {y} {x} {x, y}

As one can see, under the assumption |ω1| + |ω2
0| ≥ �n/2� , x ∈ CN(A) hence

CN(A) �= Cω1(A)∩Cω2(A). Note that, preserving the main idea, this assumption could
be modified to |Vω1(x,A; {Ci(·)})| + |ω2

0| ≥ �n/2� under the restriction
Vω1(x,A; {Ci(·)}) ⊃ ω1

0 and Vω2(x,A; {Ci(·)}) ⊇ ω2
0. �

5.2.2 Rationality Constraints for FVRs

8) Approval Voting

Theorem 54 Approval Voting satisfies Non-emptiness. It does not satisfy Weak-non
resoluteness, Inverse and Direct Condorcet, Independence of Outcast, Fixed Point con-
ditions and Weak Axiom of Revealed Preferences. When the domain of definition for
individual opinions satisfy Arrow ’s Choice Axiom in strong version,it does not satisfy
Dual Heritage constraint.

Proof : (F ∈ Λ(NE)) Since ∀i ∈ N Ci(·) ∈ ACA+, ∃x ∈ A such that
|V (x,A; {Ci(A)})| ≥ 1. Since max

x∈A
|V (x,A; {Ci(A)})| exists, C(A) �= ∅.

(F /∈ Λ(ACA+ ∩ WNR,WNR)) Consider the following example.

X C1(·) C2(·) C3(·) C(·)
{x, y, z} {x} {y} {z} {x, y, z}

In this example ∀i ∈ N Ci(A) ⊂ A but C(A) = A �⊂ A.
(F /∈ Λ(Con−)) Consider the following example.

X C1(·) C2(·) C3(·) C4(·) C(·)
{x, y, z} {x, y} {z} {x} {z} {x, z}
{x, y} {x, y} {y} {x} {y} {y}
{x, z} {x} {z} {x} {z} {x, z}
{y, z} {y} {z} {y} {z} {y, z}

In this example, x ∈ C({x, y, z}) but x /∈ C({x, y}). Since F /∈ Λ(Con−), then
F /∈ Λ(H) and F /∈ Λ(ACA) by Theorem ??.

(F /∈ Λ(Con+)) Consider the previous example. In this example, C({x, y}) ∩
C({z, y}) = {y} �⊆ C({x, y, z}) = {x, z}. Since F /∈ Λ(Con+), then F /∈ Λ(C) by
Theorem ??.
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(F /∈ Λ(O)) Consider the following example.

X C1(·) C2(·) C3(·) C(·)
{x, y, z} {x, y} {x} {z} {x}
{x, y} {x, y} {x} {y} {x, y}
{x, z} {x} {x} {z} {x}
{y, z} {y} {y} {z} {y}

In this example, C({x, y, z}) = {x} �= C({x, y}) = {x, y}. Since F /∈ Λ(O), then,
F /∈ Λ(PI) by Theorem ??.

(F /∈ Λ(ACA∗, H−)) Consider the following example for odd n. Notice that since
∀i ∈ N Ci(·) ∈ ACA∗, empty choice is allowed.

X �n/2� − 1 �n/2� − 1 1 C(·)
{x, y, z} {x, y} {z} {y} {y}
{x, y} {x, y} ∅ {y} {y}
{x, z} {x} {z} ∅ {x, z}
{y, z} {y} {z} {y} {y}

In this example, {x, z} ⊆ A but C({x, z}) �⊆ C(A).
Consider the following example for even n.

X n/2 n/2 C(·)
{x, y, z} {x, y} {y, z} {y}
{x, y} {x, y} {y} {y}
{x, z} {x} {z} {x, z}
{y, z} {y} {y, z} {y}

In this example, {x, z} ⊆ A but C({x, z}) �⊆ C(A).
Since F /∈ Λ(ACA∗, H−), then F /∈ Λ(ACA∗, ACA∗) by Theorem ??.
(F /∈ Λ(FP )) Consider the following example.

X C1(·) C2(·) C3(·) C(·)
{x, y, z} {x} {y} {z} {x, y, z}
{x, y} {x} {y} {y} {y}
{x, z} {x} {x} {z} {x}
{y, z} {z} {y} {z} {z}

In this example, since ∀i ∈ N Ci(·) ∈ ACA+ ∩ FP but C(·) /∈ FP since �∃a ∈ A
such that ∀X ⊆ A a ∈ X ⇒ a ∈ C(X).

(n ≥ 4 ⇒ F /∈ Λ(WARP )) Consider the following example where n ≥ 4.

X 1 n − 2 1 C(·)
{x, y, z} {x, y} {z} {x} {x, z}
{x, y} {x, y} {y} {x} {y}
{x, z} {x} {z} {x} {x, z}
{y, z} {y} {z} {y} {y, z}
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In this example, since C(A) = {x, z}, xGy and zGy. But, since C({x, y}) = {y}, I
also have yGx which contradicts acyclicity of G. �

9) k-Majority rule

Theorem 55 (Aleskerov, forthcoming) k-majority rules are,
(i) Non-empty rules if and only if |A| < �n/(k − 1)� ,
(ii) Weak non-resolute rules if and only if

|A| < �n/(n − k)� ,
where a rule F is non-empty (resp. weak non-resolute) if and only if

F ∈ Λ(NE,NE) (resp. F ∈ Λ(WNR,WNR)).

Note that in our notation Λ(NE) = Λ(ACA+, NE) and I check for Λ(ACA+ ∩
WNR,WNR).

Theorem 56 (i) k-majority rule satisfies Non-emptiness (or Fixed point condition) if
and only if |A| < �n/(k − 1)� and if |A| < �n/(n − k)� then k-majority rule satisfies
Weak non-resoluteness;

(ii) k-majority rule satisfies Heritage Condition;
(iii) When the domain of definition is ACA∗, k-majority rule satisfies ACA∗, i.e.,

Arrow ’s choice Axiom in Strong version;
(iv) For 1 ≤ k < n, k-majority rule does not satisfy Direct Condorcet condition,

for k = n, k-majority rule satisfies Concordance condition;
(v) k-majority rule satisfies Independence of Outcast if and only if k = 1;
(v) k-majority rule satisfies Weak Axiom of Revealed Preference if and only if k = n.

Proof : (|A| < �n/(k − 1)� ⇒ F ∈ Λ(NE)) Let |A| < �n/(k − 1)� then F ∈
Λ(NE,NE) by Theorem ??. Then ∀i ∈ N Ci(·) ∈ NE ⇒ C(·) ∈ NE. Since
ACA ∩ NE = ACA+ ⊂ NE, ∀i ∈ N Ci(·) ∈ ACA+ ⇒ C(·) ∈ NE. Hence F ∈
Λ(ACA+, NE).

(|A| < �n/(n − k)� ⇒ F ∈ Λ(ACA+ ∩ WNR,WNR)) Let |A| < �n/(n − k)� then
F ∈ Λ(WNR,WNR) by Theorem ??. Then ∀i ∈ N Ci(·) ∈ WNR ⇒ C(·) ∈ WNR.
Since ACA+ ∩ WNR ⊂ WNR, ∀i ∈ N Ci(·) ∈ ACA+ ∩ WNR ⇒ C(·) ∈ WNR.
Hence F ∈ Λ(ACA+ ∩ WNR,WNR).

(F ∈ Λ(H)) Let X ′ ⊆ X. Take any x ∈ X ′ ⊆ X such that x ∈ C(X). Then
|V (x,X, {Ci(·)})| ≥ k. Since ∀i ∈ N Ci(·) ∈ ACA+ ⊂ H, x ∈ Ci(X) ⇒ x ∈
Ci(X) ∩ X ′ �= ∅ ⇒ x ∈ Ci(X

′). Then, k ≤ |V (x,X; {Ci(·)})| ≤ |V (x,X ′; {Ci(·)})| ,
x ∈ C(X ′). Since F ∈ Λ(H), then F ∈ Λ(Con−) by Theorem ??.

Now the following Lemma is introduced.

Lemma 4 F ∈ Λ(ACA∗, H).

Proof : Let X ′ ⊆ X. Take any x ∈ X ′ ⊆ X such that x ∈ C(X). Then
|V (x,X, {Ci(·)})| ≥ k. Since ∀i ∈ N Ci(·) ∈ ACA∗ ⊂ H, x ∈ Ci(X) = X ∩ A∗
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⇒ x ∈ X ′ ∩ A∗ = C ′
i(X). Then, k ≤ |V (x,X; {Ci(·)})| ≤ |V (x,X ′; {Ci(·)})| , hence

x ∈ C(X ′). �
(F ∈ Λ(ACA∗, H−)) Let X ′ ⊆ X. Then let x ∈ C(X ′) implying that

|V (x,X ′; {Ci(·)})| ≥ k. Since ∀i ∈ N Ci(·) ∈ ACA∗ ⊂ H−, ∀i ∈ N Ci(X
′) ⊆ Ci(X).

Then
|V (x,X; {Ci(·)})| ≥ |V (x,X ′; {Ci(·)})| ≥ k implying that x ∈ C(X). Since F ∈
Λ(ACA∗, H−) ∩ Λ(ACA∗, H), then F ∈ Λ(ACA∗, ACA∗) by Theorem ??.

(F /∈ Λ(Con+)) For the case of k = 1 consider the following example.

X 1 n − 1 C(·)
{x, y, z} {z} {y} {y, z}
{x, y} {x} {y} {x, y}
{x, z} {z} {x} {x, z}
{y, z} {z} {y} {y, z}

In this example, x ∈ C({x, x}) ∩ C({y, x}) ∩ C({z, x}) but x /∈ C({x, y, z}).
For the case of (1 < k < n−1) consider the following example22 where n = 4�k/2�.

X �k/2� �k/2� �k/2� �k/2� C(·)
{x, y, z} {x, y} {x} {y} {z} {x, y}
{x, y} {x, y} {x} {y} · {x, y}
{x, z} {x} {x} {z} {z} {x, z}
{y, z} {y} {z} {y} {z} {y, z}

In this example, z ∈ C({x, z})∩C({y, z})∩C({z, z}) but z /∈ C({x, y, z}). For the
case of 1 ≤ k < n since F /∈ Λ(Con+), then F /∈ Λ(ACA) and F /∈ Λ(C) by Theorem
??.

For the case of (k = n − 1) consider the following example where n = 3.

X 1 1 1 C(·)
{x, y, z} {x} {y} {z} ∅
{x, y} {x} {y} {x} {x}
{x, z} {x} {x} {z} {x}
{y, z} {y} {y} {z} {y}

In this example, x ∈ C({x, x}) ∩ C({x, y}) ∩ C({x, z}) but x /∈ C({x, y, z}).
(k = n ⇒ F ∈ Λ(C)) Let X ′ ⊆ X. Let x ∈ C(X1) ∩ C(X2). Then ∀i ∈ N x ∈

C(X1) ∩ C(X2) �= ∅, then since ∀i ∈ N Ci(·) ∈ ACA+, ∀i ∈ N x ∈ Ci(X1 ∪ X2) =
Ci(X1) ∩ Ci(X2), then x ∈ C(X1 ∪ X2). Since F ∈ Λ(C), then F ∈ Λ(Con+) by
Theorem ??.

(k = 1 ⇒ F ∈ Λ(O)) Assume C(X) ⊆ X ′ ⊆ X. Since when k = 1 F ∈ Λ(NE),
∀X ∈ A C(X) �= ∅. Let x ∈ C(X). Then x ∈ X ′ and therefore x ∈ C(X) ∩ X ′. By
F ∈ Λ(H), then x ∈ C(X ′). Now, let x ∈ C(X ′). Then ∃i ∈ N such that x ∈ Ci(X

′).
By ∀i ∈ N Ci(X) ∈ ACA+, Ci(X) �= ∅. Let Ci(X) ∩ X ′ = ∅. Then y ∈ Ci(X), and

22By Lemma ?? �k/2� + �k/2� ≥ k.
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then y ∈ C(X). But y /∈ C(X ′) which contradicts C(X) ⊆ X ′. Then Ci(X) ∩ X ′ �= ∅.
Then x ∈ Ci(X

′) = Ci(X) ∩ X ′ by ACA. Then x ∈ Ci(X), and then x ∈ C(X)
satisfying O. Since F ∈ Λ(O) ∩ Λ(H), then F ∈ Λ(PI) by Theorem ??.

(1 < k ≤ n ⇒ F /∈ Λ(O)) First consider the following example for teh case of
k = 2.

X 1 1 1 C(·)
{x, y, z} {x} {y} {z} ∅
{x, y} {x} {y} {y} {y}
{x, z} {x} {z} {z} {z}
{y, z} {y, z} {y} {z} {y, z}

In this example, C({x, y, z}) = ∅ ⊂ {y, z} ⊂ {x, y, z} but C({y, z}) = {y, z} �= ∅.
Now consider the following example for 2 < k < n where n = 2k − 2.

X k − 2 k − 2 1 1 C(·)
{x, y, z} {x, y} {z} {x} {z} ∅
{x, y} {x, y} {y} {x} {y} ·
{x, z} {x} {z} {x} {z} ∅
{y, z} {y} {z} {z} {z} {z}

In this example, C({x, y, z}) = ∅ ⊆ {y, z} ⊆ {x, y, z} but C({y, z}) = {z} �= ∅.
Now for k = n consider the following example.

X 1 n − 1 C(·)
{x, y, z} {y} {z} ∅
{x, y} {y} {y} {y}

In this example, C(A) ⊂ {x, y} ⊂ A but ∅ = C(A) �= C({x, y}) = {y}. Since
F /∈ Λ(O), then F /∈ Λ(ACA) and F /∈ Λ(PI) by Theorem ??.

(1 ≤ k < n−1 ⇒ F /∈ Λ(WARP )) Consider the following example where n−k ≥ k.

X k n − k C(·)
{x, y, z, w} {x} {y} {x, y}
{x, y, z} {x} {y} {x, y}
{x, y, w} {x} {y} {x, y}
{x, z, w} {x} {z} {x, z}
{y, z, w} {w} {y} {w, y}

Since z ∈ C({x, z, w}) = {x, z} and w /∈ C({x, z, w}), zGw. But then w ∈
C({y, z, w}) = {w, y} and z /∈ C({y, z, w}), wGz violating acyclicity of G.
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(k = n − 1 ⇒ F /∈ Λ(WARP )) Consider the following example where n = 3 and
k = n − 1 = 2.

X 1 1 1 C(·)
{x, y, z, w, t} {x} {y} {w} ∅
{x, y, z, w} {x} {y} {w} ∅
{x, y, z, t} {x} {y} {x} {x}
{x, z, w, t} {x} {w} {w} {w}
{x, y, w, t} {x} {y} {w} ∅
{y, z, w, t} {y} {y} {w} {y}

In this example, xGyGwGx.
(k = n ⇒ F ∈ Λ(WARP )) Construct Pi corresponding to Ci(·) for each voter in N

such that Ci(X) = {x ∈ X :�∃y ∈ X such that yPix}. Since ∀i ∈ N Ci(X) ∈ ACA+

and by Theorem ??, these binary relations are weak orders, i.e., ∀i ∈ N Pi ∈ W.
Now, suppose that ∃x1, x2, ..., xm such that

x1 ∈ C(X1) and x2 ∈ X1\C(X1)
x2 ∈ C(X2) and x3 ∈ X2\C(X2)

·
·

xm ∈ C(Xm) and x1 ∈ Xm\C(Xm).

i.e., ∃x1Gx2G, ..., GxmGx1 where ∀x, y ∈ A xGy ⇔ [x ∈ C(X) and y ∈ X\C(X)]
for some X ∈ A.

Since x1Gx2, then ∃X1 ∈ A such that x1 ∈ C(X1) and x2 /∈ C(X1) where x1, x2 ∈
X1. Then ∀i ∈ N x1 ∈ Ci(X1) and ∃i1 ∈ N such that x2 /∈ Ci1(X1). Since Pi1 is a
weak order, either x1Pi1x2 or [x1P̄i1x2 and x2P̄i1x1 and zPi1x2] for some z ∈ X1. Suppose
x1P̄i1x2. But this implies zPi1x1 since Pi1 is a weak order. Since zPi1x1 is impossible by
the facts that z ∈ X1 and ∀i ∈ N x1 ∈ Ci(X1), there is a contradiction, so x1Pi1x2.
Since x2Gx3, then by similar arguments ∀i ∈ N x2 ∈ Ci(X2) and ∃i2 ∈ N such that
x3 /∈ Ci2(X2). Since Pi2 is a weak order, x2Pi2x3. Similarly, x3Pi3x4, x4Pi4x5, and then
xmPimx1.

Now consider Pi1 which is a weak order. It was stated that x1Pi1x2. Consider now
x3. Since Pi1 is a weak order, either x1Pi1x3 or x3Pi1x2. Since x3 ∈ X2 and x2 ∈
C(X2) =

⋂
i∈N

Ci(X2), x3P̄i1x2 so it must be that x1Pi1x3. Consider then x4. Since Pi1 is

a weak order, either x1Pi1x4 or x4Pi1x3. Since x4 ∈ X3 and x3 ∈ C(X3) =
⋂

i∈N

Ci(X3),

x4P̄i1x3 so it must be that x1Pi1x4. Consider, similarly all alternatives up to xm−1.
Similarly x1Pi1xm−1 must hold.

This time consider xm. Since Pi1 is a weak order, either x1Pi1xm or xmPi1xm−1.
Since xm ∈ Xm−1 and xm−1 ∈ C(Xm−1) =

⋂
i∈N

Ci(Xm−1), xmP̄i1xm−1 so it must be that

x1Pi1xm. But x1 ∈ Xm\C(Xm) and xm ∈ C(Xm) =
⋂

i∈N

Ci(Xm), x1P̄i1xm which leads

to a contradiction. So G is acyclic. �
10) Voting with Veto
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Theorem 57 Voting with Veto satisfies Weak non-resoluteness and Heritage. It does
not satisfy Non-emptiness, Independence of Outcast, Direct Condorcet and Weak Axiom
of Revealed Preferences. It satisfies Arrow ’s choice Axiom in strong version when the
domain of definition also satisfiesthis axiom.

Proof : (F /∈ Λ(NE)) Consider the example below. In this example, ∀i ∈
N Ci(·) ∈ ACA+, but C(A) = ∅. Since F /∈ Λ(NE), F /∈ Λ(FP ) by Theorem
??.

(F ∈ Λ(ACA+ ∩ WNR,WNR)) Since ∀i ∈ N Ci(·) ∈ ACA+ ∩ WNR, ∃x ∈ A
such that x /∈ Ci(A) for some i ∈ ω0 hence x /∈ C(A) ⊂ A.

(F /∈ Λ(Con+)) Consider the following example where N = {1, 2, 3, 4, 5} and ω0 =
{1, 2}.

X C1(·) C2(·) C3(·) C4(·) C5(·) C(·)
{x, y, z, w} {x} {x,w} {y} {z} {y} ∅
{x, y, z} {x} {x} {y} {z} {y} ∅
{x, y, w} {x} {x,w} {y} {x} {y} {x}
{x, z, w} {x} {x,w} {x} {z} {z} {x}
{y, z, w} {w} {w} {y} {z} {y} ∅
{x, y} {x} {x} {y} {x} {y} {x}
{x, z} {x} {x} {x} {z} {z} {x}
{x,w} {x} {x,w} {x} {x} {w} {x}
{y, z} {y} {y} {y} {z} {y} {y}
{y, w} {w} {w} {y} {w} {y} {w}
{z, w} {w} {w} {w} {z} {z} {w}

In this example, x ∈ C({x, y}) ∩ C({x, z}) ∩ C({x,w}) but x /∈ C({x, y, z, w}).
Since F /∈ Λ(Con+) then F /∈ Λ(C) by Theorem ??.

(F /∈ Λ(O))Consider the previous example. In this example, C({x, y, z, w}) = ∅ ⊂
{x, y, w} ⊂ {x, y, z, w} but ∅ = C({x, y, z, w}) �= C({x, y, w}) = {x}. Since F /∈ Λ(O),
then F /∈ Λ(ACA) and F /∈ Λ(PI) by Theorem ??.

(F ∈ Λ(H)) Take any X ′ ⊆ X ∈ A. Let x ∈ C(X) ∩ X ′. Then ∀i ∈ ω0 ∪ ω x ∈
Ci(X) where ω ⊆ N\N1 and |ω0| + |ω| ≥ �n/2� . Since ∀i ∈ N Ci(·) ∈ ACA+,
∀i ∈ ω0 ∪ ω x ∈ Ci(X

′) and hence x ∈ C(X ′). Since F ∈ Λ(H), then F ∈ Λ(Con−)
by Theorem ??.

Lemma 5 F ∈ Λ(ACA∗, H).

Proof : Take any X ′ ⊆ X ∈ A. Let x ∈ C(X) ∩ X ′. Then ∀i ∈ ω0 ∪ ω x ∈
Ci(X) where ω ⊆ N\ω1 and |ω0| + |ω| ≥ �n/2� . Since ∀i ∈ N Ci(·) ∈ ACA∗,
∀i ∈ ω0 ∪ ω x ∈ Ci(X

′) and hence x ∈ C(X ′). �
(F ∈ Λ(ACA∗, H−)) Let X ′ ⊆ X ∈ A. Then let x ∈ C(X ′) implying that ∀i ∈

ω1 ∪ ω x ∈ Ci(X
′) where {ω ⊆ N\ω1 : |ω1| + |ω| ≥ �n/2�}. Since ∀i ∈ N Ci(·) ∈

H−, ∀i ∈ ω1 ∪ ω x ∈ Ci(X) and hence x ∈ C(X ′). Since F ∈ Λ(ACA∗, H−), and
F ∈ Λ(ACA∗, H) by Lemma ??, then F ∈ Λ(ACA∗, ACA∗) by Theorem ??.
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(F /∈ Λ(WARP )) Construct Pi corresponding to Ci(·) for each voter in N such
that Ci(X) = {x ∈ X :�∃y ∈ X such that yPix}. Since ∀i ∈ N Ci(X) ∈ ACA, these
binary relations are weak orders by Theorem ??, i.e., ∀i ∈ N Pi ∈ W.

Now, suppose that ∃x1, x2, ..., xm such that

x1 ∈ C(X1) and x2 ∈ X1\C(X1)
x2 ∈ C(X2) and x3 ∈ X2\C(X2)

·
·

xm ∈ C(Xm) and x1 ∈ Xm\C(Xm).

i.e., ∃x1Gx2G, ..., GxmGx1 where ∀x, y ∈ A xGy ⇔ [x ∈ C(X) and y ∈ X\C(X)]
for some X ∈ A. First following two lemmas are proved where M = {1, ...,m}.

Lemma 6 ∀i ∈ ω0 ∀j ∈ M xj ∈ Ci(Xj) and xj+1 ∈ Ci(Xj) where xm+1 = x1.

Proof : Since x1Gx2, then ∃X1 ∈ A such that x1 ∈ C(X1) and x2 /∈ C(X1). Then
∀i ∈ ω0 x1 ∈ Ci(X1) by definition of the rule and ∃i1 ∈ N such that x1 ∈ Ci1(X1)
and x2 /∈ Ci1(X1) for otherwise x2 ∈ C(X1) by Monotonicity of F by Theorem ??.
Suppose i1 ∈ ω0. Since Pi1 is a weak order, either x1Pi1x2 or [x1P̄i1x2 and x2P̄i1x1

and zPi1x2] for some z ∈ X1. Suppose x1P̄i1x2 and x2P̄i1x1 and zPi1x2. But this
implies zPi1x1 since Pi1 is a weak order. Since zPi1x1 is impossible by the fact that
∀i ∈ ω0 x1 ∈ Ci(X1), there is a contradiction, so x1Pi1x2. Consider now x3. Since Pi1

is a weak order, either x1Pi1x3 or x3Pi1x2. Since x3 ∈ X2 and x2 ∈ C(X2) ⊆
⋂

i∈ω0

Ci(X2),

x3P̄i1x2 so it must be that x1Pi1x3. Consider then x4. Since Pi1 is a weak order, either
x1Pi1x4 or x4Pi1x3. Since x4 ∈ X3 and x3 ∈ C(X3) ⊆

⋂
i∈ω0

Ci(X3), x4P̄i1x3 so it must be

that x1Pi1x4. Consider, similarly all alternatives up to xm−1. Similarly x1Pi1xm−1 must
hold. This time consider xm. Since Pi1 is a weak order, either x1Pi1xm or xmPi1xm−1.
Since xm ∈ Xm−1 and xm−1 ∈ C(Xm−1) ⊆ ⋂

i∈ω0

Ci(Xm−1), xmP̄i1xm−1 so it must be

that x1Pi1xm. But x1 ∈ Xm\C(Xm) and xm ∈ C(Xm) ⊆ ⋂
i∈ω0

Ci(Xm), x1P̄i1xm which

leads to a contradiction. So i1 /∈ ω0. Hence ∀i ∈ ω0 x2 ∈ Ci(X1).
Since x2Gx3, then by similar arguments ∀i ∈ ω0 x2 ∈ Ci(X2) and x3 ∈ Ci(X2)

and ∃i2 ∈ N\ω0 such that x3 /∈ Ci2(X2). Similarly, ∀i ∈ ω0 x3 ∈ Ci(X3), ..., and
∀i ∈ ω0 xm ∈ Ci(Xm) and x1 ∈ Ci(Xm).

Lemma 7 ∀i ∈ ω0

⋃
j∈M

Ci(Xj) = Ci(X) where X =
⋃

j∈M

Xj.

Proof : By Lemma ?? ∀i ∈ ω0 ∀j ∈ M Ci(Xj) �= ∅. Then Ci(X) = ∅ is
impossible since ∀j ∈ M X ⊇ Xj and ∀i ∈ N Ci(·) ∈ ACA.

By Lemma ?? ∀i ∈ ω0 ∀j ∈ M xj ∈ Ci(Xj) and xj+1 ∈ Ci(Xj). Let Ci(X)∩Xj =
∅ for some j. Suppose Ci(X)∩Xj+1 �= ∅. Then Ci(X)∩Xj+1 = Ci(Xj+1) ⊇ {xj+1} and
hence xj+1 ∈ Ci(X)∩Xj �= ∅ which is a contradiction. So Ci(X)∩Xj+1 = ∅. Similarly,
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Ci(X) ∩ Xj+2 = ∅, ..., Ci(X) ∩ Xm+1 = Ci(X) ∩ X1 = ∅, and Ci(X) ∩ Xj−1 = ∅. So
∀j ∈ M Ci(X)∩Xj = ∅. But ∅ �= Ci(X) ⊆ X = X1∪...∪Xm and hence x ∈ Ci(X) ⇒
x ∈ Xj ⇒ x ∈ Ci(Xj) for some j by ACA which leads to a contradiction. Hence ∀i ∈
ω0 ∀j ∈ M Ci(X)∩Xj �= ∅ which implies ∀i ∈ ω0 ∀j ∈ M Ci(X)∩Xj = Ci(Xj)
by ∀i ∈ ω0 Ci(·) ∈ ACA.

Let x ∈ ⋃
j∈M

Ci(Xj) then x ∈ Ci(Xj) for some j which implies x ∈ Ci(X) ∩ Xj.

Now let x ∈ Ci(X) ⊆ X = X1 ∪ ... ∪ Xm. Then x ∈ Xj for some j which implies
x ∈ Ci(X) ∩ Xj = Ci(Xj) ⊆

⋃
j∈M

Ci(Xj). Hence
⋃

j∈M

Ci(Xj) = Ci(X). �

By Lemmas ?? and ?? and by ∀i ∈ ω0 Ci(·) ∈ ACA, ∀i ∈ ω0 ∀j ∈ M xj ∈
X ′ ⊆ X ⇒ xj ∈ Ci(X

′) where X =
⋃

j∈M

Xj. But by assumption, ∃i ∈ N\ω0 such

that xj ∈ Ci(Xj) and xj+1 ∈ Xj\Ci(Xj) for any xj ∈ X where x1 = xm+1. So ∀j ∈
M |ω0| ≤ |V (xj+1, Xj; {Ci(·)})| < �n/2�. Therefore for any xj ∈ X to be chosen
it must get �n/2� − |ω0| more votes from non-vetoers. Then the rule reduces to a
k′-majority rule on N\ω0, where k′ = �n/2� − |ω0| . Since k-Majority rule does not
satisfy23 WARP for 1 ≤ k < n by Theorem ??, Voting with veto does not also satisfy
it. Hence F /∈ Λ(WARP ). �

5.3 Comparative Analysis of SDRs

5.3.1 Normative Conditions for SDRs

11) Kemeny Rule

Theorem 58 Kemeny Rule satisfies Positive and Negative Unanimity. It does not
satisfy Monotonicity, Neutrality2, Positive Pareto and NoVeto Power.

Proof : (F ∈ ΛU+
) Let ∀i ∈ N (x, y) ∈ Pi. Since P ∈ −→

P , (x, y) ∈ P.

(F ∈ ΛU−
) Let ∀i ∈ N (y, x) ∈ Pi. Since P ∈ −→

P , (x, y) /∈ P.
(F /∈ ΛM) First the following Lemma is proved.

Lemma 8 If ∀i, j ∈ N\{i0} Pi = Pj and ∀i ∈ N\{i0} Pi �= Pi0 then social decision
P = Pi ∈ N\{i0}.

Proof : Assume ∀i, j ∈ N\{i0} Pi = Pj and ∀i ∈ N\{i0} Pi �= Pi0 . Then ∀i, j ∈
N\{i0} d(Pi, Pj) = 0 hence ∀i ∈ N\{i0}

∑
k∈N

d(Pi, Pk) = d(Pi, Pi0) <
∑
k∈N

d(Pi0 , Pk)

= (n − 1)d(Pi, Pi0) since n ≥ 3. Hence ∀i ∈ N\{i0} Pi = P. �
Consider the following example. (Distance matrices of

−→
P is given below, the cor-

responding matrices for
−→
P ′ is not necessary since Lemma ?? will be used).

23When |N | , |ω0| > 0, the condition k = �n/2� − |ω0| = |N | − |ω0| implies �n/2� = n, which is not
true for n > 1, hence the case of unanimity for which WARP is satisfied is irrelevant here.
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−→
P

P1 P2 P3

w z y
x x z
y y w
z w x

−→
P ′

P ′
1 P ′

2 P ′
3

z z y
x x z
y y w
w w x

R1

− x y z w
x − 1 1 0
y 0 − 1 0
z 0 0 − 0
w 1 1 1 −

R2

− x y z w
x − 1 0 1
y 0 − 0 1
z 1 1 − 1
w 0 0 0 −

R3

− x y z w
x − 0 0 0
y 1 − 1 1
z 1 0 − 1
w 1 0 0 −

In this example, P3 = P since∑
k∈N

d(P3, Pk) = 14 <
∑
k∈N

d(P2, Pk) = 16 <
∑
k∈N

d(P1, Pk) = 18 and P ′
1 = P ′

2 = P ,

by Lemma ?? since P ′
1 = P ′

2 and P ′
1 �= P ′

3. Since V (y, x; {Pi}) = V (y, x; {P ′
i}) and

V (x, y; {Pi}) = V (x, y; {P ′
i}), and yPx, but yP

′
x, F is not local. Hence F /∈ ΛM and

F /∈ ΛNe2 by Theorem ??.
(F /∈ ΛPP+

) Consider the following example where A = {x, y, z, w} and N =
{1, 2, 3}. For simplicity the corresponding distance matrices are added.

P1 P2 P3

x, y x, y x
z z, w y, z, w
w

R1

− x y z w
x − 0 1 1
y 0 − 1 1
z 0 0 − 1
w 0 0 0 −

R2

− x y z w
x − 0 1 1
y 0 − 1 1
z 0 0 − 0
w 0 0 0 −

R3

− x y z w
x − 1 1 1
y 0 − 0 0
z 0 0 − 0
w 0 0 0 −

In this example,
∑
k∈N

d(P2, Pk) = 4 <
∑
k∈N

d(P1, Pk) = 5 <
∑
k∈N

d(P3, Pk) = 7. So

P3 �= P = P2. Hence (x, y) /∈ P.

(F /∈ ΛNV P ) Consider
−→
P in the example that was used above to prove that F /∈ ΛM .

In this example, P3 = P and hence yPx although ∀i ∈ N\{3} xPiy. �
12) (k1, k2)-majority Rule

Remark19 The analysis of this rule is also sufficient for the analysis of the following
rules (because they are special cases as indicated by the following theorems): 13)
Absolute k-majority rules 14) Relative k-majority rules.
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First following theorems are introduced. Note that 1 ≤ k1 ≤ n and 0 ≤ k2 ≤ n.

Theorem 59 (Aleskerov and Vladimirov, 1986) (k1, k2)-majority rule is equal to Ab-
solute (resp. Relative ) k-majority rule if k1 + k2 = n (resp. k2 = 0).

Theorem 60 (Aleskerov and Vladimirov, 1986) (k1, k2)-majority rule belongs to Sym-
metrically Central Class.

Remark 20: By Theorem ??, Absolute and Relative k-majority rules also belong
to Symmetrically Central Class.

Theorem 61 (k1, k2)-majority rule satisfies Positive and Negative unanimity, and
Neutrality1. When 1 < k1 ≤ n it does not satisfy Positive Pareto whereas when k1 = 1
it satisfies Positive Pareto. It satisfies No veto power if and only if k1 > 1 or (k1 = 1
and k2 < n − 1).

Proof : (F ∈ ΛU+
) Let ∀i ∈ N (x, y) ∈ Pi. Then |V (x, y; {Pi})| = n ≥ k1 and

|V (y, x; {Pi})| = 0 ≤ k2 since
−→
P ∈ Wn and hence (x, y) ∈ P.

(F ∈ ΛU−
) Let ∀i ∈ N (y, x) ∈ Pi. Then since

−→
P ∈ Wn, V (x, y; {Pi}) = ∅.

Then |V (x, y; {Pi})| = 0 < k1 and (x, y) /∈ P. By Theorem ??, Absolute and Relative
k-majority rules also satisfy Positive and Negative unanimity conditions.

(k1 = 1 ⇔ F ∈ ΛPP+
) Let ∀i ∈ N (y, x) /∈ Pi and |V (x, y; {Pi})| = 1 ≥ k1 and

|V (y, x; {Pi})| = 0 ≤ k2. Then (x, y) ∈ P. let now k1 > 1. Then since |V (x, y; {Pi})| =
1 < k1. Then (x, y) /∈ P. Then by Theorem ??, Absolute and Relative k-majority rules
also satisfy Positive Pareto condition if and only if k = 1.

(k1 > 1 or (k1 = 1 and k2 < n − 1) ⇔ F ∈ ΛNV P ) Let ∀i ∈ N\{j} (x, y) ∈ Pi

and (y, x) ∈ Pj results (y, x) /∈ P. Then |V (y, x; {Pi})| = 1 < k1 or |V (y, x; {Pi})| =
1 ≥ k1 ≥ 1 but |V (x, y; {Pi})| = n − 1 > k2. Let k1 > 1 or (k1 = 1 and k2 < n − 1)
and ∀i ∈ N\{j} (x, y) ∈ Pi and (y, x) ∈ Pj. Then since |V (y, x; {Pi})| = 1 < k1 or
|V (y, x; {Pi})| = 1 ≥ k1 ≥ 1 but |V (x, y; {Pi})| = n − 1 > k2, (y, x) /∈ P.

Since (k1, k2)-majority rule satisfies No veto power if and only if k1 > 1 or (k1 = 1
and k2 < n − 1), by Theorem ?? Absolue k-majority rule satisfies NV P if and only
if 1 < k ≤ n. Note that (k1 = 1 and k2 < n − 1) ⇒ k1 + k2 �= n hence this case does
not apply to Absolute k-majority rule. On the other hand, Relative k-majority rule
satisfies NV P since the restricition k2 = 0 < n − 1 is always valid for this rule.

�

5.3.2 Rationality Constraints for SDRs

11) Kemeny Rule

Theorem 62 Social decison P by Kemeny rule is a weak order if
−→
P ∈ Wn and a

linear order if
−→
P ∈ LOn.
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Proof : Omitted since it is obvious by definition. �
12) (k1, k2)-majority rule

Theorem 63 Social decison P by (k1, k2)-majority rule is irreflexive.

Proof : Since ∀x ∈ A �∃i ∈ N such that xPix, xPx since, F ∈ Λ(PP−) by
Theorem ??.

Theorem 64 (Aleskerov and Vladimirov, 1986) Social decison P by (k1, k2)-majority
rule is acyclic if and only if k1 > k2 and �k1/k2� ≥ |A| . Whenever |A| ≥ |N | , social
decison P by (k1, k2)-majority rule is acyclic if and only if k2 = 0, i.e., the rule is a
Relative k-majority rule.

Corollary 1 Social decison P by (k1, k2)-majority rule is asymmetric if k1 > k2 and
�k1/k2� ≥ |A| . Whenever |A| ≥ |N | , social decison P by (k1, k2)-majority rule is
asymmetric if k2 = 0, i.e., the rule is a Relative k-majority rule.

Proof : Obvious by Theorem ?? and the fact that Acyclicity implies Asymmetry
by Theorem ??.

Theorem 65 (Aleskerov and Vladimirov, 1986) Social decison P by (k1, k2)-majority
rule is a Strict Partial Order if and only if k2 = 0, i.e., the rule is a Relative k-majority
rule.

Corollary 2 Social decison P by (k1, k2)-majority rule is transitive if and only if k2 =
0, i.e., the rule is a Relative k-majority rule.

Proof : Since by Theorem ?? social decison P by (k1, k2)-majority rule is always
irreflexive, for P to be a Strict Partial Order, it is necessary and sufficient to be
transitive.

Theorem 66 (Aleskerov and Vladimirov, 1986) Social decison P by (k1, k2)-majority
rule is never a Weak Order.

Theorem 67 ∀−→P ∈ Wn assuming that 0 < k2 < n, (cases k2 = n and k2 = 0 will be
investigated seperately below by utilizing Theorem ??).

(i) If k1 = 1 then social decison P by (k1, k2)-majority rule is not asymmetric and
if k1 = n then it is asymmetric;

(ii) If 1 < k1 < n and k2 = 1 then social decison P by (k1, k2)-majority rule is
asymmetric;

(iii) If 1 < k1 < n and 1 < k2 < n then social decison P by (k1, k2)-majority rule
is not asymmetric if 2k1 ≤ |V (x, y; {Pi})| + |V (y, x; {Pi})| ≤ 2k2.
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Proof : For the case of k1 = 1, consider the following example.

1 1 n − 2
· · ·
x y x, y
y x ·
· · ·

In this example, since |V (x, y; {Pi})| = |V (y, x; {Pi})| = 1 ≥ k1 and |V (x, y; {Pi})|
= |V (y, x; {Pi})| = 1 ≤ k2, xPy and yPx.

Let 1 < k1 < n and k2 = 1. Let xPy. Then |V (x, y; {Pi})| ≥ k1 and |V (y, x; {Pi})| ≤
1 < k1 then (y, x) /∈ P.

Let 1 < k1 < n and 1 < k2 < n. Let xPy. Then |V (x, y; {Pi})| ≥ k1 and
|V (y, x; {Pi})| ≤ k2. Let then yPx. Then |V (y, x; {Pi})| ≥ k1 and |V (x, y; {Pi})| ≤ k2.
Hence 2k1 ≤ |V (x, y; {Pi})| + |V (y, x; {Pi})| ≤ 2k2.

Let k1 = n. Then let xPy. Then yPx since
−→
P ∈ Wn, |V (y, x; {Pi})| = 0 and by

Theorem ?? F ∈ ΛPP−
.

Theorem 68 (i) Whenever 1 ≤ k1 ≤ 2, if 1 ≤ k2 < n − 2 then social decison P by
(k1, k2)-majority rule is not connected while n − 1 ≤ k2 ≤ n it is connected.

(ii) If 2 < k1 < n then social decison P by (k1, k2)-majority rule is not connected.
(iii) If k1 = n then social decison P by (k1, k2)-majority rule is not connected. (The

cases of k2 = n and k2 = 0 will be investigated seperately below by Theorem ??).

Proof : For the case of 1 ≤ k1 ≤ 2 and 1 ≤ k2 ≤ n − 3, consider the following
example.

k2 + 1 k2 + 1
· ·
x y
y x
· ·

In this example, since |V (x, y; {Pi})| = |V (y, x; {Pi})| ≥ 2 ≥ k1 but |V (y, x; {Pi})| >
k2 and |V (x, y; {Pi})| > k2, xPy and yPx.

For the case of k1 = 1 and n − 2 ≤ k2 ≤ n, suppose ∃x, y ∈ A such that x �= y

and xPyPx where
−→
P ∈ LO. Then |V (x, y; {Pi})| ≥ k1 and |V (y, x; {Pi})| ≥ k1 since

∀a, b ∈ A |V (a, b; {Pi})| = 0 ⇒ bPa. But then |V (y, x; {Pi})| > k2 ≥ n − 2 and
|V (x, y; {Pi})| > k2 ≥ n− 2. Hence |V (x, y; {Pi})| + |V (y, x; {Pi})| = n ≥ (2n− 4) + 2
and therefore n ≤ 2 which I do not consider.

For the case of k1 = 2 and n − 2 ≤ k2 ≤ n, suppose ∃x, y ∈ A such that x �= y

and xPyPx where
−→
P ∈ LO. Let k2 = n − 2 then there are four possibilities. (1)

|V (x, y; {Pi})| < 2 and |V (y, x; {Pi})| < 2 then |V (x, y; {Pi})| ≤ 1 and |V (y, x; {Pi})| ≤
1 hence |V (x, y; {Pi})| + |V (y, x; {Pi})| = n ≤ 2 a case which I do not consider.
(2) |V (x, y; {Pi})| < 2 and |V (y, x; {Pi})| ≥ 2 but |V (x, y; {Pi})| > n − 2. Then
2 > |V (x, y; {Pi})| > n − 2 and hence n = 2 a case which I do not consider. (3)
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Just apply case (2) to the pair (y, x) instead of pair (x, y). (4) Let |V (x, y; {Pi})| ≥ 2
and |V (y, x; {Pi})| > n − 2 and |V (y, x; {Pi})| ≥ 2 and |V (x, y; {Pi})| > n − 2. Then
|V (x, y; {Pi})|+ |V (y, x; {Pi})| ≥ n + 1 > n which is a contradiction. For the cases of
k2 = n − 1 and k2 = n just similar path should be followed as the case of k2 = n − 2.

For the case of 2 < k1 < n, consider the following example.

k1 − 1 k1 − 1
· ·
x y
y x
· ·

In this example, since |V (x, y; {Pi})| < k1 and |V (y, x; {Pi})| < k1, xPy and yPx.
For the case of k1 = n, consider the following example where j > 0.

j n − j
· ·
x y
y x
· ·

In this example, xPy and yPx.

Theorem 69 If n = k1 + 2k2 + 2 then F /∈ Λ(Ngtrv).

Proof : Consider the following example.

k1 k2 + 1 k2 + 1
x x z
z y x
y z y

In this example, xPy but xPz and zPy. �

13) Absolute k-majority

Theorem 70 Social decison P by absolute k-majority rule is irreflexive. For 1 ≤ k <
n−1, it is not asymmetric, not negatively transitive and not connected. For k = n−1, it
is asymmetric, not negatively transitive and not connected and not acyclic for |A| > 2.
For k = 1, it is not asymmetric, but negatively transitive and connected. For k = n it
is a strict partial order.

Proof : (F ∈ Λ(Irref)) By Theorems ?? and ?? F ∈ Λ(Irref).
(1 ≤ k < n − 1 ⇒ F /∈ Λ(Asym)) Consider the following example where A =

{x, y, z}.
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k k n − 2k
x y x, y, z

y, z x
z

In this example, xPy and yPx violating asymmetry and hence F /∈ Λ(Acyc), and
by F ∈ Λ(Irref) and F /∈ Λ(Trv) by Theorem ??.

(k = n − 1 ⇒ F ∈ Λ(Asym)) Let xPy. Then |V (x, y; {Pi})| ≥ n − 1, but since

∀−→P ∈ Wn ⇒ (∀i ∈ N xPiy ⇒ yP ix), |V (y, x; {Pi})| ≤ 1 < n − 1 = k since n ≥ 3.
Hence yPx.

(k = n− 1 ⇒ F /∈ Λ(Acyc)) Consider the following example and let k = n− 1 = 2.

1 1 1
x y z
y z x
z x y

In this example, xPyPzPx.

(k = n ⇒ F ∈ Λ(Trv)) Let xPy and yPz. Then ∀i ∈ N xPiy and yPiz. Since
−→
P ∈

Wn, xPiz and then xPz hence F ∈ Λ(Trv). And since additionally F ∈ Λ(Irref)),
F ∈ Λ(Acyc) and hence F ∈ Λ(Asym) by Theorem ??.

(k = 1 ⇒ F ∈ Λ(NegTrv)) Let xPy and z ∈ A. Then ∃i ∈ N such that xPiy.

Since
−→
P ∈ Wn, xPiz or zPiy and hence xPz or zPy.

(1 < k ≤ n ⇒ F /∈ Λ(NegTrv)) Consider the following example where A =
{x, y, z}.

k − 2 1 1 n − k
x y y x, y, z
y x, z z
z x

In this example, P = {(y, z)} violating negative transitivity.
(k = 1 ⇒ F ∈ Λ(Conn)) Let x �= y and xPy and yPx. Then ∀i ∈ N xP iy and

yP ix which is impossible since ∀i ∈ N Pi ∈ LO is assumed.
(1 < k ≤ n ⇒ F /∈ Λ(Conn)) Consider the following example where A = {x, y, z}.

k − 2 1 1 n − k
x y x x, y, z
y x y
z z z

In this example, xPy and yPx violating connectedness. �

14) Relative k-majority
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Theorem 71 (Aleskerov and Vladimirov, 1986) Social decision P by
relative k-majority is a strict partial order.

Proof : (F ∈ Λ(Irref)) By Theorems ?? and ?? F ∈ Λ(Irref).
(F ∈ Λ(Trv)) Let xPy and yPz, and let |V (x, y; {Pi})| ≥ k. Consider i0 ∈

V (x, y; {Pi}) and z ∈ A. Since yPz and
−→
P ∈ Wn, either yPi0z or (yP i0z and zP i0y),

by definition of the rule. Let yPi0z. Then xPi0z by transitivity of Pi0 . Let, on the other
hand, yP i0z and zP i0y. Since Pi0 ∈ W and xPi0y, I have xPi0z or zPi0y, and hence
xPi0z. Then V (x, y; {Pi}) ⊆ V (x, z; {Pi}) and so |V (x, z; {Pi})| ≥ |V (x, y; {Pi})| ≥ k.

Now consider j0 = {i ∈ N : xP iy and yP ix} = ω1. There are two possibilities.
1) xPj0z or [xP j0z and zP j0x], 2) zPj0x. Consider the latter, i.e., zPj0x. Since Pj0 ∈
W , and xP j0y and yP j0x, zPj0y which contradicts yPz, hence the first possibility is
relevant. But since xPj0z or [xP j0z and zP j0x], and |V (x, z; {Pi})| ≥ |V (x, y; {Pi})| ≥
k, xPz.

Since P is a strict partial order, F ∈ Λ(Acyc) and hence F ∈ Λ(Asym) by Theorem
??.

(F /∈ Λ(NegTrv)) For 1 ≤ k < n consider the following example.

n − k k
x, y z
z x

y

In this example, P = {(x, y)} violating negative transitivity. For k = n consider
the following example.

1 1 1
x x z
z y x
y z y

In this example, xPy but xPz and zPy.
(F /∈ Λ(Conn)) Consider the following example where A = {x, y, z}.

k − 1 1 n − k
x y x, y, z
y x
z z

For the case of 1 < k ≤ n, in this example, xPy and yPx violating connectedness.
For the case of k = 1 consider the following example.

1 1 n − 2
x y x, y, z
y x
z z

In this example, xPy and yPx violating connectedness. �
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6 Conclusions

First the results are given in tables then comments on these results are made. In tables
below (+) represents that the rule belongs to the class and (-) that it does not. If there
is an additional assumption for a given result, this will be stated via footnotes. Since
all the rules considered satisfy Neutrality1 it will not be included in the tables.

6.1 Social Choice Correspondences

6.1.1 Normative conditions for Coalitional Pareto Rules

In the first column of this table, classes of rules seperated by normative conditions and
in the first row the coalitional Pareto rules are listed. As defined before Symmetrically
Central Class ΛSC are class of (local) rules that satisfy Positive and Negative non-
imposedness, Monotonicity, Neutrality2 and Anonymity.

A plus sign (+) means that the rule satisfies the given condition whereas a minus
sign (-) denotes the opposite. Because a rule might satisfy for some parameters and
not for others we use the following 2-row 3-column matrix convention in the following
manner. Given a rule and a condition, if for parameters k = 1 and q = 0 a rule satisfies
the given condition, the upper left corner of the inner matrix will have a plus sign (+).
As the parameters change the signs can change. If a rule satisfies (resp. violates) a
condition for all the parameters then there will be a plus (resp. minus) sign. It is
written below which position belongs to which parameter values.

k = 1 and q = 0 1 < k < n and q = 0 k = n and q = 0
k = 1 and q > 0 1 < k < n and q > 0 k = n and q > 0

NCs\CPRs Fs Fss Fw

ΛSC + + +
ΛU + + +

ΛND+ + − −
+ − −

− − +
− − +

+

ΛND− + + +
− − −

+ − −
− − −

+ − −
− − −

ΛNV P1
− + +
− − −

+ + −
− − − −

ΛNV P2
+ + +
+ − −

+ + +
− − +

+

ΛRA − − +
− − +

+ − −
+ − − −

ΛPA + + −
+ + − − +
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6.1.2 Rationality constraints for Coalitional Pareto Rules

Since Λ(NE) = Λ(FP ) for all the CPRs by Theorem , Λ(FP ) will not be listed in the
table. For expository purposes Λ(WNR) has been used in the table below instead of
Λ(ACA+ ∩ WNR,WNR).

RCs\CPRs Fs Fss Fw

Λ(NE)
+ − −
+ − −

− − +
− − +

+

Λ(WNR)
− − +
− − −

+ − −
− − − −

Λ(WARP )
− − +
− − −

+ − −
− − − −

Λ(H) + + +

Λ(C)
− − +
− − −

+ + −
− − − −

Λ(O)
+ − −
+ − −

− − +
− − +

+

Λ(ACA) − − −
Λ(Con−) + + +

Λ(Con+)
− − +
− − −

+ + −
− − − −

Λ(PI)
+ − −
+ − −

− − +
− − +

+

Λ(ACA∗) − − −
Λ(H−) − − −

6.1.3 Normative conditions for Positional SCCs

Not to make the table complicated, the following (trivial) facts will not be shown
via table: Both plurality and Borda satisfy Positive and Negative non-imposedness,
Anonymity, Neutrality1. Since none of these rules satisfy Locality condition, they do
not satisfy Monotonicity and Neutrality2 conditions by Theorem ??.

NCs\PSCCs P lurality InverseP lurality Borda InverseBorda

ΛL − − − −
ΛU + + + +

ΛND+ − − − −
ΛND−

+ − − −
ΛNV P1 + − − −
ΛNV P2 + − − −
ΛRA + + + −
ΛPA + + + −
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6.1.4 Rationality constraints for Positional SCCs

For expository purposes Λ(WNR) has been used in the table below instead of
Λ(ACA+ ∩ WNR,WNR). Similarly, Λ(ACA∗) and Λ(H−) has been used instead of
Λ(ACA∗, ACA∗) and Λ(ACA∗, H−).

RCs\PSCCs P lurality InverseP lurality Borda InverseBorda

Λ(NE) + + + +
Λ(FP ) − − − −

Λ(WNR) − − − −
Λ(WARP ) − − − −

Λ(H) − − − −
Λ(C) − − − −
Λ(O) − − − −

Λ(ACA) − − − −
Λ(Con−) − − − −
Λ(Con+) − − − +
Λ(PI) − − − −

Λ(ACA∗) − − − −
Λ(H−) − − − −

6.2 Functional Voting Rules

6.2.1 Normative conditions for Functional Voting Rules

As defined before Symmetrically Central Class ΛSC are class of (local) rules that satisfy
Positive and Negative non-imposedness, Monotonicity, Neutrality2 and Anonymity.
Below AV denotes Approval Voting, k-M denotes k-majority rules and V wV denotes
Voting with Veto. Not to make the table complicated, the following facts will not
be shown via table: All the FVRs satisfy Positive and Negative non-imposedness,
and Neutrality1. Approval Voting does not satisfy Locality hence Monotonicity and
Neutrality2. All the FVRs but Voting with Veto does not satisfy Anonymity hence
although it satisfies Monotonicity and Neutrality2 (hence Locality) it is not in ΛSC .

NCs\FV Rs AV k-M V wV

ΛSC − + −
ΛU+

+ + +

ΛU−
+ + +

ΛNV P + − + + +
ΛRA + − − + +

6.2.2 Rationality constraints for Functional Voting Rules

For expository purposes Λ(WNR) has been used in the table below instead of
Λ(ACA+ ∩ WNR,WNR). Similarly, Λ(ACA∗) and Λ(H−) has been used instead of
Λ(ACA∗, ACA∗) and Λ(ACA∗, H−).
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RCs\FV Rs AV k-M V wV

Λ(NE) + − −
Λ(FP ) − − −

Λ(WNR) − − +
Λ(WARP ) − − − + −

Λ(H) − + +
Λ(C) − − − + −
Λ(O) − + − − −

Λ(ACA) − − −
Λ(Con−) − + +
Λ(Con+) − − − + −
Λ(PI) − + − − −

Λ(ACA∗) − + +
Λ(H−) − + +

6.3 Social Decision Rules

6.3.1 Normative conditions for Social Decision Rules

As defined before Symmetrically Central Class ΛSC are class of (quasilocal) rules that
satisfy Positive and Negative non-imposedness, Monotonicity, Neutrality2, Anonymity
and Negative Pareto. Below K-r denotes Kemeny rule, (k1́, k2)-M denotes (k1́, k2)-
majority rules and Abs-k (resp.Rel-k) denotes Absolute (resp. Relative) k-majority
rules.

Not to make the table complicated, the following facts will not be shown via table:
All the SDRs satisfy Positive and Negative non-imposedness, Neutrality1, Negative
Pareto and Anonymity. Kemeny rule does not satisfy Quasilocality hence Monotonicity
and Neutrality2. All the FVRs but Voting with Veto does not satisfy Anonymity hence
although it satisfies Monotonicity and Neutrality2 (hence Locality) it is not in ΛSC .

NCs\FV Rs K-r (k1́, k2)-M Abs-k Rel-k

ΛSC − + + +

ΛU+
+ + + +

ΛU−
+ + + +

ΛPP+ − + − − + − − + − −
ΛNV P − − + + − + + +

6.3.2 Rationality constraints for Social Decision Rules

For expository purposes Λ(WNR) has been used in the table below instead of
Λ(ACA+ ∩ WNR,WNR). Similarly, Λ(ACA∗) and Λ(H−) has been used instead of
Λ(ACA∗, ACA∗) and Λ(ACA∗, H−).
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RCs\SDRs K-r (k1́, k2)-M Abs-k Rel-k

Λ(Asym) + − − +
Λ(Acyc) + − − +
Λ(Trv) + − − +

Λ(Ngtrv) + − − −
Λ(Conn) + − − −
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A Appendix

A.1 Social Choice Correspondences (SCCs)

In this section, the individual opinions are represented as weak orders and the social
decision is constructed as a choice function.

The procedures are classified into six24:
1. SCCs using majority relation,
2. SCCs using a utility function
3. SCCs using tournament matrix,
4. Positional SCCs,
5. Coalitional Pareto Rules
6. SCCs using Lexicographic utilities.

Unless otherwise stated
−→
P is a profile of linear orders, the given presentation is A

and the given coalition is N . Throughout the definitions the expressions are to hold

∀−→P ∈ L , ∀ω ∈ Ω , ∀X ∈ A.

A.1.1 Procedures using majority relation μ

1 Simple Majority rule

The alternative is chosen if declared best by at least a majority of voters �n/2� ,
i.e.,

a ∈ F (
−→
P ) ⇐⇒ n+(a,

−→
P ) ≥ �n/2� .

2 Condorcet Winner (CW)

Given N , if an alternative a ∈ A is preferred to every b ∈ A\{a} by a majority of
N then this alternative is called the Condorcet Winner (this majority need not consist
the same voters), i.e.

a ∈ F (
−→
P ) ⇐⇒ [∀x ∈ A\{a},∃a such that aμx].

Assume that the number of voters in N is odd, then a unique CW will be obtained.
In contrast to the winner of the simple majority rule, an alternative may be a CW
even if it is declared top by none of the voters. Every simple majority winner is also a
CW but not vice versa.

3 Multi Step Binary Voting (MSBV)

24A similar classification can be found in (Moulin, 1987, part 4), which considers the SCCs in mainly
two general groups, 1) Condorcet type ( in our case the SCCs, which use the majority relation ) and
2) Borda type ( in our case positional SCCs).
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Suppose the alternatives are ordered beforehand. Then starting from the first
compare the alternative at hand with the next in terms of majority relation. Eliminate
the one which is dominated and do this until one alternative is left, i.e.

Starting from i = 1
If aiμai+1 then choose ai and compare ai with ai+2,which is next in the order;
If ai+1μai then choose ai+1 and compare ai+1 with ai+2

and so on until there is no alternative to compare the one at hand. This alternative
is chosen.

4 General Optimal Choice Axiom (GOCHA)

This procedure chooses the undominated alternatives forming a cycle in μ. It is
defined by the following binary relation S on A where S is called the relation of indirect
domination25:

xSy ⇐⇒ ∃ an order of alternatives in X, x = x1, x2, ..., xn = y such that
x1μx2μ...μxn and

�∃ an order of alternatives in X, y = z1, z2, ..., zn = x such that
y = z1μz2μ...μzn = x.
So S is a binary relation which includes (x, y) if and only if x dominates an alter-

native that dominates another ( and possibly many others ) which dominates y but y
can not do the same. The procedure is to choose undominated alternatives, i.e.

F (
−→
P ) = {a ∈ A :�∃x ∈ A such that xSa}.

5 von Neumann-Morgenstern Solution (vN-M Solution)

A set Q ⊆ A is called vN-M solution if no alternative is preferred to another in terms
of majority relation μ in Q but for any alternative in A\Q there exists one alternative
from Q dominating it in terms of μ . A vN-M solution Q is minimal if no subset of Q
is a vN-M solution, i.e.,

If ([a ∈ Q and b ∈ Q] ⇒ [aμb and bμa] and ∀c ∈ A\Q , ∃x ∈ Q such that xμc ).

Then F (
−→
P ) = Q.

If the vN-M solution is not unique, then social decision is the union of these sets.

6 Minimal Dominant Set

A set Q ⊆ A is called dominant if each alternative in Q dominates every alternative
outside Q in terms of μ. A dominant set Q is minimal if no subset of Q is dominant,
i.e.,

Q ⊆ A is called dominant if x ∈ Q ⇒ [∀y ∈ A\Q, xμy].
Q is minimal if �∃Q′ ⊆ Q such that Q′ is dominant.

Then F (
−→
P ) = Q. If such sets are not unique, then social decision is the union of

these sets.
25In other words, S is the transitive closure of μ. Transitive closure is defined as follows for any

binary relation P on set A:
P t = P ∪ P ◦ P ∪ P ◦ P ◦ P.....
where, P ◦ P = {(x, z) : (x, y) ∈ P and (y, z) ∈ P}
and ◦ is called the composition operation on binary relations
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7 Minimal Undominated Set (Schwartz’s Procedure)

A set Q ⊆ A is called undominated if no alternative from A\Q dominates any
alternative inside Q in terms of μ. An undominted set Q is minimal if no subset of Q
is undominated; i.e.,

Q ⊆ A is called undominated if x ∈ Q ⇒�∃y ∈ A\Q such that yμx.
Q is minimal if �∃Q′ ⊂ Q such that Q′ is undominated.

Then F (
−→
P ) = Q. If such sets are not unique, then social decision is the union of

these sets.

8 Minimal Weakly Stable Set (Aleskerov’s Procedure)

A set Q ⊆ A is called weakly stable if it has the following property: For any alter-
native x ∈ Q , if there exists an alternative y ∈ A\Q which dominates this alternative
x in terms of μ, then there exists another alternative z ∈ Q, which dominates y. A
weakly stable set Q is minimal if no subset of Q is weakly stable, i.e.,

Q ⊆ A is called weakly stable if for any x ∈ Q , ∃y ∈ A\Q such that yμx , then
∃z ∈ Q such that zμy; Q is minimal if ∃Q′ ⊆ Q such that Q′ is weakly stable.

Then F (
−→
P ) = Q. If such sets are not unique, then social decision is the union of

these sets.

9 Fishburn’s Rule

Consider the upper contour sets of all alternatives in A regarding the majority
relation, that is D(x) for any x ∈ A. Construct binary relation γ such that xγy ⇐⇒
D(x) ⊂ D(y). Then the undominated alternatives in terms of γ is chosen, i.e.,

x ∈ F (
−→
P ) ⇐⇒ [�∃y ∈ A such that yγx] .

10 Uncovered Sets

Consider the lower contour sets of all alternatives in A regarding the majority
relation, that is L(x) for any x ∈ A. Construct binary relation δ such that xδy ⇐⇒
L(x) ⊃ L(y) Then the undominated alternative in terms of δ is chosen, i.e.,

x ∈ F (
−→
P ) ⇐⇒ [�∃y ∈ A such that yδx].

11 Richelson’s Rule

Consider the upper and lower contour sets of all alternatives in A regarding the
majority relation that is D(x) and L(x) for any x ∈ A. Constrcuct binary relation σ
such that xσy ⇐⇒[ L(x) ⊇ L(y) and D(x) ⊆ D(y) and ( either [L(x) ⊃ L(y) ]or
[D(x) ⊂ D(y)]) ].Then the undominated alternative in terms of σ is chosen, i.e.,

x ∈ F (
−→
P ) ⇐⇒�∃y ∈ A such that yσx .

12 Dodgson’s Procedure
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This procedure chooses the CW if it exists. For the cases where there does not

exist a CW, define an inversion in
−→
P for x ∈ A ,which is a change from xPiy to yPix

for any Pi ∈ −→
P . The alternative which needs the minimum number of inversions to

become a CW is chosen. Given
−→
P the number of inversions is denoted as t(x,

−→
P ) for

any x ∈ A .The procedure is as follows:

If a is the CW then {a} = F (
−→
P ) else

F (
−→
P ) = {x ∈ A : ∀y ∈ A , t(x,

−→
P ) ≤ t(y,

−→
P )} .

A.1.2 Procedures using a utility function

In each of these procedures it is constructed some intermediate ’utility’ function which
assigns some numerical values to alternatives. These values represent the desirability
of the alternative to society and society decides on the alternatives by choosing the
one(s) having the maximum numerical value.

13 Copeland’s Rule I

Define u(x) as the difference of cardinalities of lower and upper contour sets of x,
i.e., u(x) = |L(x)| − |D(x)| . Then the alternatives with maximum utility value are
chosen, i.e.,

x ∈ F (
−→
P ) ⇐⇒ [∀y ∈ A , u(x) ≥ u(y)].

14 Copeland’s Rule II

Define u(x) as the difference of cardinality of lower contour set of x, i.e., u(x) =
|L(x)|. Then the alternatives with maximum utility value are chosen, i.e.,

x ∈ F (
−→
P ) ⇐⇒ [∀y ∈ A , u(x) ≥ u(y)].

15 Young’s Procedure

Given N and
−→
P , if a ∈ A is a CW, then it is chosen and procedure ends. If

not, define partial Condorcet winner as CW (j) as a CW on some coalition ω∗ with
|ω∗| = j < n . Define u(x) as the cardinality of the greatest coalition where x is the
partial CW, i.e., u(x) = i ⇔ x = CW (i) . Then the alternatives with maximum utility
value are chosen, i.e.,

a ∈ F (
−→
P ) if a is CW (j0) for j0 = max

1≤j≤n
{j}.

A.1.3 Procedures using tournament matrix

16 Maxmin Procedure (Simpson’s Procedure)

Construct a matrix S+ such that ∀a, b ∈ A, S+ = {n(a, b)} with {n(a, a)} = ∞,
where rows and columns correspond to the set of alternatives in A. Then choose row
minima from every row (for every alternative). For any c ∈ A , this number (row
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minimum) shows the worst performance of c against its ’toughest’ contestant. Then
choose the alternative to which maximum of row minima correspond, that is, choose
the alternative which performed best against its contestants, i.e.,

x ∈ F (
−→
P ) if n(x, y) = max

a∈A
{min

b∈A
{n(a, b)}} for some y ∈ A.

17 Minimax Procedure

Construct a matrix S− such that ∀a, b ∈ X, S− = {n(a, b)}, with n(a, a) = −∞,
where rows and columns correspond to the set of alternatives in A. Then choose column
maxima from every column (for every alternative). For any c ∈ A , this number (column
maximum) shows the worst performance of c against its ’toughest’ contestant. Then
choose the alternative to which minimum of column maxima correspond, that is choose
the alternative which performed best against its contestants, i.e.,

x ∈ F (
−→
P ) if n(x, y) = min

b∈A
{max

a∈A
{n(a, b)}} for some y ∈ A.

A.1.4 Positional SCCs

18 Plurality rule

The alternative declared the best by a maximal number of voters is chosen, i.e.,

a ∈ F (
−→
P ) ⇐⇒ [∀x ∈ A, n+(a,

−→
P ) ≥ n+(x,

−→
P )].

19 Runoff Procedure

First simple majority is applied and if as a result F (
−→
P ) �= ∅ Runoff procedure ends.

Otherwise eliminate every alternative but two, those having the maximal number of

top votes. Then contract
−→
P to those two alternatives and apply the simple majority

rule to them, i.e.,

If ∃x ∈ A such that n+(x,
−→
P ) ≥ �n/2� , then x ∈ F (A,

−→
P ) and procedure is over.

If not then first determine b ∈ A with the highest number of top votes, i.e.,

∀y ∈ A, n+(b,
−→
P ) ≥ n+(y,

−→
P ) ,

then determine c ∈ A\{b} with the next highest number of top votes in A, i.e.,

∀z ∈ A/{b}, n+(c,
−→
P ) ≥ n+(z,

−→
P ) .

Then apply simple majority to X = {b, c} under
−→
P /X .

20 Hare System

First simple majority is applied and if as a result F (
−→
P ) �= ∅ Hare procedure ends.

If as a result F (
−→
P ) = ∅ , then one alternative is eliminated from A, the one who got a

minimal number of top votes. Then simple majority is reapplied to the remaining set
and procedure continues similarly, i.e.,

If ∃x ∈ A such that n+(x,
−→
P ) ≥ �n/2� then x ∈ F (

−→
P )

If not eliminate c ∈ A such that ∀b ∈ A, n+(c,
−→
P ) ≤ n+(b,

−→
P )

and apply the same procedure to X = A\{c} and
−→
P /X.

If there does not exist a simple majority winner then, continue with the procedure
by contracting the set in consideration until reaching a social decision.
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21 Inverse Plurality rule

The alternative declared worst by a minimal number of voters is chosen, i.e.,

a ∈ F (
−→
P ) ⇐⇒ [∀x ∈ A, n−(a,

−→
P ) ≤ n−(x,

−→
P )].

22 Borda Procedure

Given a profile of linear orders
−→
P , consider x ∈ A and assign to x a score ri(x,

−→
P ),

which is the cardinality of lower contour set under Pi ∈ −→
P , i.e., ri(x,

−→
P ) = |Li(x)| =

|{b ∈ A : aPib}|. The sum of these scores through every i ∈ N is called the Borda
Count of the alternative. Then choose the one who has highest Borda Count, i.e.,

Let r(a,
−→
P ) =

n∑
i=1

ri(a, Pi) where r(a,
−→
P ) is the Borda Count of a . Then a ∈

F (A,
−→
P ) ⇐⇒ [∀b ∈ A, r(a,

−→
P ,A) ≥ r(b,

−→
P ,A)].

23 Black’s Procedure

This procedure is a combination of two previously defined SCPs: If there exists a
CW, then it is chosen else apply the Borda Procedure.

24 Inverse Borda Procedure

Compute the Borda Count of each alternative as defined in Borda Procedure. Then

eliminate the one who has lowest Borda Count and contract
−→
P to the remaininig set

and compute the new Borda Scores in the contracted profile. Then eliminate another
one similarly and go on like this until there is no alternative to eliminate from the
contracted set, i.e.,

Let r(a,
−→
P ) be the Borda Count of any a ∈ A under

−→
P .

Then eliminate c ∈ A where ∀x ∈ A, r(c,
−→
P ) ≤ r(x,

−→
P ).

and apply the same procedure to X = A\{c} and
−→
P /X .

Continue with the procedure by contracting the set in consideration until reaching
a social decision.

25 Nanson’s Procedure

Given
−→
P compute the Borda Counts of each alternative in A. Then compute the

average of these counts. Then eliminate those, who have lower scores than the average
value. Then compute the new Borda Scores from the contracted profile. Then eliminate
another one similarly and go on like this until there is no alternative to eliminate from
the contracted set, i.e.,

Compute r =

(∑
a∈A

r(a,
−→
P )

)
/ |A| . Then eliminate c ∈ A if r(c,

−→
P ) < r and con-

struct X = {a ∈ A : r(a,
−→
P ) ≥ r}.

Then apply the same procedure to X and
−→
P /X .

Continue with the procedure by contracting the set in consideration until reaching
a social decision.
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26 Coomb’s Procedure

Given A and
−→
P , a profile of linear orders, the alternative declared worst by a

maximal number of voters is eliminated. Then contract
−→
P to the remaining set X.

Then eliminate another one similarly and go on like this until there is no alternative
to eliminate from the contracted set, i.e.,

Given A and
−→
P , eliminate c ∈ A such that ∀x ∈ A, n−(c,

−→
P ) ≤ n−(x,

−→
P ) . Then

apply the same procedure to X = A\{c} and
−→
P /X.

Continue with the procedure by contracting the set in consideration until reaching
a social decision.

A.1.5 Coalitional Pareto rules

27 Strong k−majoritarian q−Pareto rule

Let f(X,
−→
P ; {i}, q) be defined as q top elements in preference of i when contracted

to X. Let I = {I ⊆ N : |I| = k} where 1 ≤ k ≤ n. The rule chooses an alternative if it
is among the top q elements in the preference of every agent in some I with cardinality
k, i.e.,

C(X) =
⋃
I∈I

⋂
i∈I

f(X,
−→
P ; {i}, q)

where f(X,
−→
P ; {i}, q) = {x ∈ X : card Di(x) ≤ q}.

28 Weak k−majoritarian q−Pareto rule

Let f(X,
−→
P ; I, q) be defined as elements in profile

−→
P contracted to I, having upper

contour sets having an intersection with cardinality smaller than q. Let I = {I ⊆ N :
|I| = k} where 1 ≤ k ≤ n. The rule chooses an alternative if it has such upper contour
sets with regard to one coalition I with cardinality k, i.e.,

C(X) =
⋃
I∈I

f(X,
−→
P ; I, q)

where f(X,
−→
P ; I, q) = {x ∈ X : ∀i ∈ N |X ∩ Di(x)| ≤ q}.

29 Strongest k−majoritarian q−Pareto rule

Let f(X,
−→
P ; I, q) be defined as elements in profile

−→
P contracted to I, having upper

contour sets having an intersection with cardinality smaller than or equal to q. (Here
q can be thought as a performance criterion for the alternatives26). Let I = {I ⊆ N :
|I| = k} where 1 ≤ k ≤ n. The rule chooses an alternative if it has such upper contour
sets with regard to all coalitions with cardinality k, i.e.,

C(X) =
⋂
I∈I

f(X,
−→
P ; I, q)

where f(X,
−→
P ; I, q) = {x ∈ X : ∀i ∈ N |X ∩ Di(x)| ≤ q}.

26For the present model, it will be assumed that 0 ≤ q ≤ |A|−1. This is because q < 0 implies that
∀X C(X) = ∅ and q ≥ |A| implies that ∀X C(X) = X.
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A.1.6 Procedures using Lexicographic utility functions

30 Leximin Rule

Suppose for each x ∈ A there is a vector of utility values and the components of the
vector are values assigned by individuals to that alternative, i.e., given N , u : A −→
Rn. Let u(x) show the values assigned to x by voters in N and with the following prop-
erty: u(x) = [u1(x), u2(x), ....., un(x)] where ui(x), i ∈ N are in non-decreasing order,
i.e. u1(x) ≤ u2(x) ≤ ..... ≤ un(x). Then it is said that x is lexicographically preferred to
y, i.e. x(lp)y , iff [∃i ∈ N, ui(x) > ui(y) and ∀j ∈ N\ {i} , ui(x) = ui(y)] . Then un-
dominated alternative is chosen, i.e. F (A; u(·)) = {z ∈ A :�∃y ∈ A such that y(lp)z }.

A.2 Social Decision Rules (SDRs)

In this section, the individual opinions are in the form of binary relations and the social
decision is also in the form of a binary relation.

31 Kemeny Rule

Given
−→
P construct matrix ∀a, b ∈ A , R = {ri

ab}where ri
ab = 1 if aPib , ri

ab = 0
otherwise. Let the distance d(Pi, Pj) of a linear order to another linear order be defined

as follows: ∀a, b ∈ A , ∀i, j ∈ N , d(Pi, Pj) =
∑
a,b

∣∣ri
ab − rj

ab

∣∣ . The distance d(Pi,
−→
P ) of a

linear order Pi to the profile
−→
P , is defined as follows: d(Pi,

−→
P ) =

∑
j∈N

d(Pi, Pj) . Finally,

the linear order with minimum distance to its profile is the social decision from that
profile, i.e.

F (
−→
P ) = Pk ∈ −→

P , where ∀Pj ∈ −→
P , d(Pk,

−→
P ) ≤ d(Pj,

−→
P ) .

32 τ -system of (k1,k2) -majorities

Given a profile of weak orders
−→
P and N , in (k1,k2) -majority procedure the pair

(x, y) ∈ A × A is included in social decision P if n1 ≥ k1 voters include this pair in
their preferences, n2 ≤ k2 voters include (y, x) ∈ A × A in their preferences and the
rest of the voters (n− (n1 + n2) abstain to include (x, y) or (y, x) in their preferences)
, i.e.,

Given k1 and k2 ,

F (
−→
P ) = P = {(x, y) ∈ A × A : n1 ≥ k1 and n2 ≤ k2} ,

where card{i ∈ N : (x, y) ∈ Pi} = n1 and card{j ∈ N : (y, x) ∈ Pj} = n2 and
n1 + n2 ≤ n .

This rule can be generalized to τ -system of (k1,k2) -majorities. A procedure is τ -
system of (k1,k2) -majorities if it is a union of the procedures (k1,k2)-majorities. For
example, suppose τ = 3 , then an admissible procedure is {(6, 3), (4, 2), (3, 1)}-majority,
i.e. the decision is made if at least 6 voters vote for it and not more than 3 against it;
or at least 4 voters vote for it and not more than 2 against it;or at least 4 voters vote
for it and not more than 2 against it.
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33 Absolute k -majority

Given a profile of weak orders
−→
P and N , in this procedure the pair (x, y) ∈ A × A

is included in social decision P if n1 ≥ k voters include this pair in their preferences
independent of other preferences, i.e.,

Given k ,

F (
−→
P ) = P = {(x, y) ∈ A × A : n1 ≥ k} ,

where card{i ∈ N : (x, y) ∈ Pi} = n1 .

34 Relative k -majority

Given a profile of weak orders
−→
P and N , in this procedure the pair (x, y) ∈ A × A

is included in social decision P if n1 ≥ k voters include this pair in their preferences
and other voters abstain to include (x, y) or (y, x) in their preferences, i.e.,

Given k1 ,

F (
−→
P ) = {(x, y) : [card{i : (x, y) ∈ Pi} = n1 ≥ k1] and

card{j : (y, x) /∈ Pj and (x, y) /∈ Pj} = n − n1}.

A.3 Functional Voting Rules (FVRs)

In this section, the individual opinions are in the form of choice functions and the social
decision is also in the form of a choice function.

Unless otherwise stated the given presentation is A and the given coalition is N .

Throughout the definitions the expressions are to hold ∀−→C ∈ CN , ∀ω ∈ Ω , ∀X ∈ A.

35 Approval Voting27

Given
−→
C (·) every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. Then for each

alternative x ∈ A , the number of voters who choose x from A is computed. The
alternative with greatest such number is chosen if it is chosen at least by one voter, i.e.

C(A) = F (
→
C) = {x ∈ ⋃

i∈N

Ci(A) : ∀y ∈ X,

card {i ∈ N : x ∈ Ci(A)} ≥ card {i ∈ N : y ∈ Ci(A)}}.

36 k −Majority rules

36.1 One vote for (k = 1)

27This version of Approval Voting is by (Sertel, 1988). Here, an alternative is chosen as social
decision, only if it is chosen by at least one of the voters whereas in Fishburn and Brams’ version
whole presentation is chosen if each of the voters declare empty choice.
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Given
−→
C (·) every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. For each al-

ternative the number of voters who indicated that alternative in his/her choice set is
computed. The alternative is in the social decision C(A) if there exists at least one
voter who includes it in his/her choice set, i.e.,

C(A) = F (
→
C) = {x ∈ A : card {i ∈ N : x ∈ Ci(A)} ≥ 1} .

36.2 k− Majority rules (2 ≤ k ≤ n − 1)

Given
−→
C (·) every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. For each al-

ternative the number of voters who indicated that alternative in his/her choice set is
computed. The alternative is in the social decision C(A) if there exists at least k voters
who includes it in his/her choice set where 2 ≤ k ≤ n − 1, i.e.,

C(A) = F (
→
C) = {x ∈ A : card {i ∈ N : x ∈ Ci(A)} ≥ k} where 2 ≤ k ≤ n − 1.

36.3 Unanimity (k = n)

Given
−→
C (·) every i ∈ N chooses Ci(A) from A where Ci(A) ⊆ A. For each al-

ternative the number of voters who indicated that alternative in his/her choice set is
computed. The alternative is in the social decision C(A) if all the voters include it in
his/her choice set, i.e.,

C(A) = F (
→
C) = {x ∈ A : card {i ∈ N : x ∈ Ci(A)} = n} .

37 Voting with Veto

In this procedure, A = {x} is the only admissible presentation. As a social decision,
choice of x represents acception of a ”proposal” x, and choice of empty set means
preserving ”status quo”.

The set of voters is partitioned into two: the vetoers and others. The set N1 is
called the set of vetoers where ∀j ∈ N1, Cj(A) = ∅ ⇒ C(A) = ∅. So if a voter who
has the right to veto chooses empty set from X, then the social decision is empty
set. Otherwise, to get {x} as social decision there must be a simple majority of voters
choosing x. If there does not exist simple majority the decision is again empty set, i.e.

Let N = N1 ∪ N2 and N1 ∩ N2 = ∅ , where N1 is the set of vetoers.
If (∃i ∈ N1 such that Ci(A) = ∅) or (∀j ∈ N1 , Cj(A) = x but card{k ∈ N : Ck(·) =

x} < �n/2� ) then C(A) = F (
→
C) = ∅. Else C(A) = {x}.
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